

1.

Written by

Cecilie Fredsgaard - Cefre17 Sandra Malling-Larsen – Small11

Troels Kaldau – Trkal20 Theis Juul Langlands - Thlan20

Nicolaj Aalykke Hansen - Nicol20

Semester Project:
Intelligent Software

Systems
Software Engineering SDU

4th Semester 2022

Page 1 of 80

1. Abstract
This report covers the work of developing a 2D Tower Defence game, where a player places towers to

shoot enemies attempting to walk from one end of a map to another. The player loses when enough

enemies have reached the end of the map.

The main purpose is to use the learning outcome from the courses ‘Algorithms and Data structures’,

‘Artificial Intelligence’ and ‘Component Based Software Engineering’.

The game is engineered using interface-oriented development and the OSGi framework. It contains the

components Map, Core, Player, Enemy, Tower, and Projectile, whereof Enemy, Tower, Projectile, and

Player can be loaded and unloaded during runtime without restarting the application.

The report contains descriptions of the implementation of the A* algorithm used for path finding on the

map. Specific data structures are considered for efficiently sorting and storing the enemies within a

tower’s shooting range.

The requirements with the highest priority, containing the basic functionality of a tower defence game,

has been tested for their functionality with expected values.

The system design is flexible and maintainable, so further functionality can easily be added in the future

to improve the game experience.

Page 2 of 80

Contents

1. Abstract .. 1

Contents .. 2

2. Project Description ... 5

2.1. Gameplay ... 5

2.2. Constraints .. 6

2.3. Project Selection... 6

3. Requirements ... 7

3.1. Non-functional requirements.. 7

3.2. Functional requirements ... 7

4. Analysis .. 9

4.1. Component analysis ... 9

4.2. Interface analysis .. 11

4.3. Artificial Intelligence... 12

5. Design .. 14

5.1. Selection of Component Framework .. 14

5.2. Interface Contracts .. 14

5.3. Component Design ... 18

5.4. Interaction between Components ... 30

5.5. Artificial Intelligence... 31

5.6. Entity Overview ... 34

6. Implementation .. 35

6.1. Core .. 35

6.2. Common .. 39

6.3. Common components .. 39

6.4. Collision ... 40

6.5. Map... 42

Page 3 of 80

6.6. Tower .. 43

6.7. Projectile ... 44

6.8. Enemy ... 46

6.9. Player .. 48

6.10. Test... 49

6.11. FileHandler .. 49

6.12. LibGDX .. 50

6.13. The final game .. 50

7. Test ... 51

7.1. Dynamic loading and unloading ... 51

7.2. Components... 53

7.3. Player movement .. 54

7.4. Building towers ... 56

7.5. Enemy movement with AI.. 58

7.6. Health system ... 62

7.7. Tower shooting .. 64

7.8. Continues path in map ... 64

7.9. Collision detection.. 66

7.10. Generating projectiles .. 67

7.11. Projectile movement ... 68

7.12. Projectile out of bounds .. 69

7.13. Game initialization ... 70

7.14. Results .. 71

8. Discussion ... 72

8.1. Requirements ... 72

8.2. Test... 72

8.3. Component framework ... 72

Page 4 of 80

8.4. Artificial Intelligence... 73

8.5. Maintainability ... 74

8.6. Importance of predefined interface contracts... 74

9. Conclusion .. 75

10. Bibliography .. 76

Appendix A IMap interface specification ... 77

Page 5 of 80

2. Project Description
The aim of this project is to create a classic Tower Defence 2D game described in section 2.1 with the

constraints given by the description in section 2.2, and shaped by the team’s focus for the project as

described in section 2.3.

As this project contains both a player entity moving around the map, as well as a user, who plays the

game by key inputs, it has been decided to use the word “player” for the entity in the game, and the word

“user” for the person playing the game, to avoid confusion.

2.1. Gameplay
The type of game chosen for this project is a Tower Defence game. In a Tower Defence game, a map is

defined, usually with a single path running from one edge to another. On this path, enemies are spawned

on one end, and walk to the other. The user of the game places towers along the sides of the path, which

shoots the enemies when they are within range. The objective is to kill the enemies before they reach

the end of the path. As they reach the end, the user loses life points. When all life points are lost, the

game is over. The enemies come in waves of increasing numbers, making the game gradually harder,

which inevitably leads to the user losing the game.

In this version, the user must move the player entity to a location on the map where they wish to build

a tower, instead of placing towers freely, which is more common for the genre.

The player entity dies on contact with the enemies, which makes the user unable to create new towers.

Once the player entity is dead, the game runs until the towers already placed cannot hold back the waves

of enemies, and life points reach zero. A screenshot from a simple tower defence game used for

inspiration can be seen in Figure 1

Figure 1 – mocked example of a Tower Defence game
source: https://www.y8.com/games/simple_tower_defense

Page 6 of 80

2.2. Constraints
The following constraints for this project are given by the project description and consist of the

following:

• This project must be built using a component-oriented structure, using a Component

Framework, with support for multiple ClassLoaders and component versioning.

• It must contain the components Player, Enemy, Weapon, GameEngine, and Map.

• It must be possible to add and remove the Player, Enemy and Weapon components during

runtime.

• The Project must also contain an aspect of AI and a description of algorithms and data-structures

used in the project.

2.3. Project Selection
The purpose of this project is to implement the knowledge and skills obtained through the courses of

the 4th semester of Software Engineering at SDU. These are ‘Component Base, software Engineering’,

‘Artificial Intelligence’, and ‘Algorithms and Data structures.

In selecting the project, the focus is to keep the gameplay itself simple, utilizing the aspects described in

the project limitations in section 2.2

The priority is to work with the functionality of components, rather than advanced graphics, sound, and

gameplay. It should be possible to work in an agile way, implementing functionality gradually, with focus

on ease of extension and meeting the requirements.

Page 7 of 80

3. Requirements
The requirements are derived from the project description in section 2, covering the gameplay and

project constraints. They are categorized into non-functional and functional requirements.

3.1. Non-functional requirements
The non-functional requirements contain the design constraints described in section 2.2, and can be

found in Table 1 below.

Table 1 – non-functional requirements

ID Category Non-functional requirement

NF1 Environment
Must use component framework that can load and unload components during
runtime, OSGi or NetBeans

NF2 Design Must contain well defined and defended data structures

NF3 Design Must contain algorithms

NF4 Design Must use algorithms for Artificial intelligence

3.2. Functional requirements
The functional requirements cover the basic gameplay as described in section 2.1. They are prioritized

using the MoSCoW model, with the must-haves representing the minimum viable product. All must-have

requirements are tested and verified, see section 7.

Table 2 - functional requirements

ID Functional requirements MoSCoW Test#

F1 Must be possible to dynamically load/unload Player, Enemy, Weapon M 7.1

F2 Must contain components Player, Weapon, Enemy, Map, Core M -

F3 Player

F3.1 A player must be able to move all over the map M 7.3

F3.2 A player must be able to build towers M 7.4

F3.3 A player could be able to repair a tower C -

F3.4 A player could be able shoot at enemies C -

F3.5 A player must have a health system M 7.6

Page 8 of 80

F4 Enemy

F4.1 An Enemy must be able to move through the path on the map using AI M 7.5

F4.2 An Enemy must have a health system M 7.6

F4.3 An Enemy could be able to shoot at the player C -

F4.4 An Enemy might be able to shoot at a tower W -

F4.5 An Enemy should have a walking speed S -

F4.6 An EnemySystem could decide which enemies to add to the map C -

F5 Tower

F5.1 A Tower must be able to shoot at enemies M 7.7

F5.2 A Tower might be able to use different kinds of weapons W -

F5.3 A Tower might be able to have a shooting speed W -

F5.4 A Tower could have a health system C -

F5.5 A Tower should be able to choose the correct enemy as a target S -

F6 Map

F6.1 A Map must have a fixed path through the board M 7.8

F6.2 A Map could be generated dynamically, so that it is different for every game C -

F7 Collision

F7.1
Collisions between player, enemies and projectiles must be detected and
handled

M 7.9

F8 Projectile

F8.1 A Projectile must be able to be generated M 7.10

F8.2 A Projectile must be able to move in a straight line with a defined speed M 7.11

F8.3 A Projectile must die when it reaches the end of the map M 7.12

F9 Core (GameEngine)

F9.1 A core must initialize and run the game M 7.13

F9.2 There could be a menu at start-up C -

F9.3 It might be possible to change game settings in the menu W -

Page 9 of 80

4. Analysis
In this section, the functionality of the individual components composing the game will be analysed. The

required interfaces for controlling and communication between components are specified, and the

implementation of artificial intelligence is analysed.

4.1. Component analysis
The game will consist of the following components derived from the requirements: Player, Enemy,

Tower, Map, Collision, Projectile, Core, and a Common component for shared common global attributes

and interfaces. They will be described in the following sections.

4.1.1. Core

The Core component is the GameEngine responsible for creating the game, controlling the game flow,

and ending the game.

Initially a map is loaded, relevant entities are added to the game, and the game data is set, e.g., life, score,

and money. During the gameplay, the Core will handle user input, generate attacks, update entities, and

the screen will continuously render with updated entity positions. After each update the Core will check

the consequences, e.g., collision between entities, update of scores, and check if the game has ended.

When the game ends, the Core will stop any active processes and prompt the user to start a new game.

The flow can be seen in the diagram in Figure 2.

Figure 2 - Game flow activity diagram

Page 10 of 80

4.1.2. Map

The map is built from square tiles of a fixed size, organized into a coordinate system with standard x-

and y-axes. Each tile will have a property used to divide them into types: start, end, path, grass, or tower.

Each tile property will have its own image, to allow a user to visually differentiate between them.

4.1.3. Tower

The Tower is a non-movable entity which can be placed by a player on grass tiles on the map. It can

shoot projectiles at enemies within its range.

The tower will select the ideal enemy to target based on four criteria; the enemy's straight-line distance

to the end- and start tiles, the health of the enemy and the distance from the enemy to the tower. An

evaluation function calculates a value based on these criteria, with each criterion being multiplied by a

weight to balance their importance. The distance to the end tile and the enemy’s remaining health is

deemed the most important, so they will have the highest contribution to the decision. The tower then

selects an enemy by comparing the values of the enemies within its attack range and targets the enemy

with the lowest value.

4.1.4. Projectile

The projectile will be a moving entity created by towers when they wish to shoot at enemies. It will move

in a set linear direction with a specified speed and range.

The projectile will travel to the edge of the map where it terminates, unless it has already been destroyed

by hitting an enemy or reaching the end of the projectile's range.

4.1.5. Enemy

The enemies will be movable entities, which move along the path tiles on the map. The path is detected

based on the layout of the map. There will be a health counter, which decreases when hit by projectiles.

The enemy will search for an end tile, and once it is reached, the enemy will be removed from the world,

and do damage to the user by subtracting life points.

4.1.6. Player

The player will be a move- and controllable entity, which will move according to the input given by the

user. The player will be able to place towers on tiles and can move across the entire map. Furthermore,

it will take damage if intercepted by enemies.

Page 11 of 80

4.1.7. Common

The common module will contain functionality shared between all the components and information

about the game, including commonly used entities and interfaces present in the game, as well as

information about the game session, such as the life and score of the user.

4.2. Interface analysis
For the components to have independent implementation, communication between them is done

through interfaces. This makes it possible to replace one component with another if the requirements

of the interface contracts are met. This makes the system flexible and easy to extend or modify, if e.g.,

another type of enemy or tower is wanted. The interfaces are derived from the component analysis and

the requirements.

An interface will need to be implemented to make it possible to start and stop components, as derived

from requirement F1.

Interfaces for updating entities and processing what happens after an update during gameplay is

needed, e.g., for moving the entities and handling collisions between them.

A player needs to be able to build towers, and a tower needs to create and shoot projectiles, so interfaces

for creating towers and projectiles are needed.

Most components will need to access the map and its methods, which an interface is needed for. A table

of the required interfaces is seen in Table 3 with name, description and which components

provides the service.

 Table 3 - List of necessary interfaces

ID Name Description Component providers

IF1 IGamePluginService Start and stop components
Tower, Projectile, Enemy, Player,
Map

IF2 IEntityProcessingService
Update entities during
gameplay

Tower, Projectile, Enemy, Player

IF3 IPostEntityProcessingService
Handle consequences of an
update

Collision

IF4 TowerSPI Create towers Tower

IF5 ProjectileSPI Create Projectile Projectile

IF6 IMap Expose map functionality Map

Page 12 of 80

An illustration of the interfaces required and provided by the components in the system can be seen in

Figure 3.

Figure 3 - Diagram showing the required and proved interfaces for the different components

Lollipop notation is used to show which interfaces are required and provided by the components, e.g., it

is visible that the map component is a service provider of the IMap interface, and it is used by all other

components except Collision. Likewise, the TowerSPI interface is required by the Player and is provided

by the Tower. Where two interfaces are specified, two interfaces are provided and required. E.g., the

Player component provides two interfaces: IEntityProcessingService and IGamePluginService, and the

Core component requires both from the Player.

4.3. Artificial Intelligence
To uphold requirement F4.1, there must be AI in the path finding of enemies. This means that the

algorithm should calculate the path that allows the enemies to walk from the start tile to the end tile of

the map. To assess which algorithm to use, performance and completeness is investigated. The path is

finite, which means there is an end and a start.

Page 13 of 80

4.3.1. Performance

A* is most commonly the first algorithm considered when looking at performance. This is because A* is

considerably faster than, for instance, Depth-first Search and Breadth-first Search. There are only very

few cases in which they will outperform A*. This occurs in very few cases, for example, when the first

node in each level of the search tree is always part of the path to the goal; then depth is the best.

The easiest way to compare the algorithms is to look at their Big-O-Notation.

Table 4 - Comparison between different search methods [1]

Algorithm Big-O Completeness

Depth-first-search 𝑂(𝑏𝑚) Yes, given the path is finite

Breadth-first-search 𝑂(𝑏𝑑) Yes

A*-search
Number of nodes for which

𝑓(𝑛) ≤ 𝐶∗(𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙)
Yes

b: maximum branching factor of the search tree

d: depth of the optimal solution

m: maximum length of any path in the state space

C*: cost of optimal solution

All the algorithms under consideration are complete. Depth-first and breadth-first can grow very fast,

but so can A*. In most cases, A* will be much faster than the other two, but it very much depends on its

heuristic functions. A* can go as low as 𝛳(1) in very rare cases. Since the number of heuristic functions

and nodes are very limited, A* would be the optimal choice.

Page 14 of 80

5. Design
This section will cover design considerations when building the system including:

• Selection of a component framework

• Interface and component design

• Interaction between components

• Design of artificial intelligence.

Since the project is composed of components, a component framework needs to be selected that covers

the non-functional requirement NF1, see section 3.1, of being able to load and unload components at

runtime, which is covered in section 5.1

The system is build using interface-oriented design, with the components interacting through interfaces

as mentioned in section 4.2. Therefore, it is important to have strong and well-defined interface

contracts, see section 5.2. The concrete implementation of a component can be changed as long as it

fulfills the terms of the interface contract. Therefore, the focus of design will be on those contracts.

The design and interaction between the components found in section 4.1 is described in section 5.3, 5.4

and 5.6, and the design of the AI path-finding algorithm can be seen in section 5.5

5.1. Selection of Component Framework
To use the component-based architecture, a component-framework must be selected. The decision lies

between the NetBeans module system and OSGi module system. In this project the OSGi module system

will be used, as it is the de facto industry standard for dynamic loading and unloading [2], and therefore

more relevant from a learning perspective. Component lookup and dynamic loading and unloading of

modules is more intuitive in OSGi because of dependency injection, which is seen as the best choice since

implementation is simpler. Dependency injection is highly supported in OSGi, which is another reason

why OSGi is the chosen framework for this project.

5.2. Interface Contracts
Having strong and well-defined contracts before implementation is important since it prevents the need

for changing the interface during development. Changes could potentially ruin a system if it depends on

specific functionality defined in interfaces. Having a stable and well-defined contract prevents this, since

every component complies with the interface. In general, it is allowed to add more functionality to an

interface, but deleting functionality should be avoided.

Page 15 of 80

The interfaces described in section 4.2 are specified with methods and system operation contracts for

each method it contains. The following chapter details the interfaces used in this project.

5.2.1. IGamePluginService

The IGamePluginService is used for adding and removing components to and from the game using the

methods start and stop. See description in Table 5.

Table 5 - Interface contract for IGamePluginService

IF1: IGamePluginService

Operation start(GameData gameData, World world)

Description Adds elements to the game.

Parameters gameData: global information about the game.

world: list of all entities in the game

Preconditions A game has been created with gameData and world

Postconditions An entity has been added to the world

Operation stop(GameData gameData, World world)

Description Removing elements from the game.

Parameters gameData: global information about the game.

world: list of all entities in the game

Preconditions A game has been created with gameData and world

Postconditions An entity has been removed from the world

5.2.2. IEntityProcessingService

Offers functionality to update entities during gameplay and consists of a process operation, which

updates fields in entities, and a draw method, which draws the entity on the screen. See full description

in Table 6.

Page 16 of 80

Table 6 - Interface contract for IEntityProcessingService

IF2: IEntityProcessingService

Operation process(GameData gameData, World world)

Description controlling elements added to the game, e.g., movement of player and enemy.

Parameters
gameData: global information about the game.

world: list of all entities in the game

Preconditions -

Postconditions Entities has been processed and updated

Operation draw(Image image, World world)

Description updating the entity image placement on the map

Parameters
image - image representing the entity.

world - list of all entities in the game

Preconditions -

Postconditions Image has drawn on screen with correct position

5.2.3. IPostProcessingService

Handles consequences of an update and should be called after updating entities using the

IEntityProcessingService. E.g., used for handling collision between entities. The details can be found in

Table 7 below.

Table 7 - Interface contract for IPostEntityProcessingService

IF3: IPostEntityProcessingService

Operation process(GameData gameData, World world)

Description Handle consequences of an update

Parameters
gameData: global information about the game.

world: list of all entities in the game

Preconditions
A game has been created with gameData and world

The IEntityProcessingService has been processed

Postconditions The entities have been further processed in the world

Page 17 of 80

5.2.4. TowerSPI

The TowerSPI is used for creating a tower at a specific tile if the position adheres to the specified

requirements. Full detail can be found in Table 8 below.

Table 8 - Interface contract for TowerSPI

IF4: TowerSPI

Operation createTower(GameData gameData, World world, int x, int y)

Description verify that a tower can be built at the given location and create a tower.

Parameters

gameData: global information about the game.

world: list of all entities in the game

x,y: tile coordinates where tower is placed

Preconditions The gamedata and world can be accessed.

Postconditions A tower has been created from the location and returned.

5.2.5. ProjectileSPI

The ProjectileSPI is used for creating a projectile with the position and direction of the shooter, and the

speed defined by the weapon of the shooter. See Table 9 for further details.

Table 9 - Interface contract for ProjectileSPI

IF5: ProjectileSPI

Operation createProjectile(Entity shooter, GameData gameData, World world)

Description Responsible for creating bullets when fired by an entity.

Parameters

shooter: entity who creates the projectile

gameData: global information about the game.

world: list of all entities in the game

Preconditions

A game must have been initialized.

The shooter entity must contain position coordinates, a direction of movement and a
weapon description defining the speed of the created projectiles.

Postconditions A projectile has been created

Page 18 of 80

5.2.6. IMap

Provides a map and methods for accessing its properties as listed in Table 10. A full specification can be

found in the interface contact in Appendix A .

Table 10 - Resumé of the IMap interface contract

IMap methods - resumé

get basic map properties, e.g height, width, tilesize

verify if a point is inside the map

get a list of the coordinates containing the path

change between tile coordinates and map coordinates

change the tile type

get coordinates of start and end tile

get the properties for a specific tile, e.g., grass, tower.

5.3. Component Design
In this section the design of all components will be described including the concrete design of how

methods described in the interface contracts above will function in the individual components

5.3.1. Core

The Core components main responsibility is controlling the game flow, see Figure 2 in section 4.1.1.

First a game needs to be initialized, setting global variables in the GameData class, e.g., life, money, and

score, as well as loading a map, loading fonts, sprites and creating entities.

The game loop starts; updating game text, updating the entities by calling the process method on all

classes implementing IEntityProcessingService, followed by the draw method to update the screen.

During the game the score will be saved as a new high score, provided it has surpassed the previous high

score. Finally, the process method on classes implementing IPostEntityService is called. This loop

continues while the user still has life left, and once the user runs out of life, it is possible to restart the

game.

The Core component consists of the classes Game, which is responsible for initializing and updating the

Game, and a helper class GameInputProcessor, which registers input from the keyboard. The class

specifications for Game and GameInputProcessor are found in Table 11 and Table 12 respectively.

Page 19 of 80

Table 11 - Class specification for Game class

<<class>>

Game

Purpose Responsible for initializing the game and updating the game logic.

Functionalities

Initializing the game

Configuring the graphics and fonts

Setting the initial GameData, e.g., life, money etc.

Configuring attack rate

Calls start method on IGamePluginService

Update during gameplay

Drawing text

Update and draw entities

Re-rendering the screen

SPI’s -

Table 12 - Class specification for GameInputProcessor class

<<class>>

GameInputProcessor

Purpose The input class is responsible for registering user inputs from the keyboard.

Functionalities The class provides functions for detecting whether specified keys are down or up.

SPI’s -

5.3.2. Tower

The Tower component is responsible for creating and removing tower entities in the game, as well as

detecting enemies within its range, and prioritizing which enemies to shoot at. It consists of two classes,

TowerControlSystem and TowerPlugin.

The TowerControlSystem class is responsible for targeting enemies and creating towers, see class

specification in Table 13.

Page 20 of 80

Table 13 - Class specification for TowerControlSystem

<< class >>

TowerControlSystem

Purpose Create tower and shoot projectiles at enemies

Functionalities

Shoot enemies

Detecting and selecting enemy to target

Create projectile through ProjectileSPI.

Creating tower entities

verify if placed on valid location

Create new towers

SPI’s IEntityProcessingService, TowerSPI

The createTower method is implementing the method from the TowerSPI interface. It verifies that the

tower can be built on the specified location and creates a new tower entity.

The process method of IEntityProcessingService controls the behavior of a tower. It checks whether

there are enemies within its range. The reachable enemies are stored using a min-heap; the reachable

enemy entities are sorted after the value of their heuristics as described in section 4.1.3.

This will keep the enemy with the lowest value as root of the search tree, so that it is possible to retrieve

the enemy from the heap in 𝑂(1) running time. Adding an enemy to the min-heap can be done in

𝑂(𝑙𝑜𝑔 𝑛) time [3]. Alternatively, this could be implemented with a for loop iterating over the list of

enemies, keeping track of the enemy with the lowest heuristic value, but this solution would have a

running time of 𝑂(𝑛). Seeing the min-heap allows for faster search for best enemy as well as faster

addition of enemies, this approach was chosen instead of the for loop.

If an enemy is selected, the angle between the tower and enemy is calculated, the tower is rotated to

point at the enemy, and a projectile is created using the ProjectileSPI.

A sequence diagram depicting the process method can be found below in Figure 4.

Page 21 of 80

Figure 4 - Sequence diagram for process method in TowerControlSystem

To remove tower components from the game, the TowerPlugin class is used. See class specification in

Table 14.

Table 14 - Class specification for TowerPlugin

<< class >>

TowerPlugin

Purpose Removing all towers when components stopped.

Functionalities Provides methods for stopping the component.

SPI’s IGamePluginService.

Page 22 of 80

5.3.3. Player

The Player component is responsible for moving the Player entity on the map, based on the user’s input,

and requesting tower builds. The Player component contains two classes; PlayerControlSystem, found

in Table 15, and PlayerPlugin, found in Table 16.

Table 15 - Class specification for PlayerControlSystem

<<class>>

PlayerControlSystem

Purpose Responsible for updating the player during gameplay.

Functionalities Provides a method for updating the Player component.

SPI’s IEntityProcessingService

Table 16 - Class specification for PlayerPlugin

<<class>>

PlayerPlugin

Purpose Responsible for creating the player on start-up and removing the player on shutdown.

Functionalities Provides methods for starting and stopping the Player component

SPI’s IGamePluginService

The PlayerControlSystem implements one method: process. This method is used to execute all the

responsibilities of the Player component. This means updating the Player values according to the

peripheral input, as well as building towers and updating the general game data accordingly. A step-by-

step overview of the process method can be seen in the sequence diagram in Figure 5.

Page 23 of 80

Figure 5 - Sequence diagram for the process method in PlayerControlSystem

5.3.4. Enemy

The Enemy component is responsible for instantiating enemies, guiding them through the map, and

destroying them. It is also responsible for updating the common GameData as a result of the enemy’s

creation, movement, and destruction. The class specifications for EnemyPlugin and

EnemyControlSystem can be found in Table 17 and Table 18 respectively.

Table 17 - Class specification for EnemyPlugin

<<class>>

EnemyPlugin

Purpose
Responsible for handling the start and stop of the Enemy component, cleaning up any
resources used, and updating any game data relevant to the stopping of the module.

Functionalities Provides methods for starting and stopping the Enemy component

SPI’s IGamePluginService

Page 24 of 80

Table 18 - Class specification EnemyControlSystem

<<class>>

EnemyControlSystem

Purpose
Responsible for processing any changes to the enemies, updating them accordingly, and
finding the way through the map.

Functionalities Provides a method for updating the Enemy component.

SPI’s IEntityProcessingService

The EnemyControlSystem implements only one method: process. This method is used to execute all the

responsibilities of the Enemy module. This includes instantiating enemies, updating their properties,

and removing them if certain conditions are met. The sequence diagram for the process method can be

seen on Figure 6.

Figure 6 - Sequence diagram for process enemies

Page 25 of 80

5.3.5. Collision

The Collision component is responsible for detecting collisions between different entities, subtracting

lives from the appropriate entities, and removing dead entities from the world, see class specification in

Table 19.

Table 19 - Class specification for CollisionManager

<<class>>

CollisionManager

Purpose Responsible for detecting all collisions and damaging the lifepart of the affected entities.

Functionalities
Provides a method for detecting collisions, handle consequences, and removing dead
entities from the world.

SPI’s IPostEntityProcessingService

To determine whether entities collide, circle collision is used [4]. The distance between enemies is

calculated using Pythagoras and compared to the sum of both entities’ radii. If the distance is less than

this value, the entities are colliding as seen in Figure 7 - detecting collision using circle collision.

Figure 7 - detecting collision using circle collision

If a collision is detected, entities are damaged and life should be subtracted from the entities, depending

on different conditions. E.g., the player should not be damaged by a tower, enemies do not affect each

other when colliding, and nothing should collide with towers.

Page 26 of 80

If an entity dies after having a life point deducted, different actions happen depending on which entity

it is. If a projectile collides with anything or an enemy is dead, it is removed from the world and the score

updated accordingly. If the player dies, a marker should be set, which is to be handled in the game loop.

5.3.6. Projectile

The Projectile component is responsible for instantiating projectiles an controlling their movement

during gameplay. It contains two classes ProjectilePlugin and ProjectileControlSystem.

The ProjectilePlugin class is responsible for removing projectiles from the world, see specification in

Table 20.

Table 20 - Class specification for ProjectilePlugin

<<class>>

ProjectilePlugin

Purpose Responsible for removing projectiles when stopped.

Functionalities Provides methods for removing the Projectile component

SPI’s IGamePluginService

The ProjectileControlSystem handles updates of projectiles during gameplay, removes projectiles if the

exceed their range or flying outside the map and is responsible for creating a new projectile, with

properties defined by the shooters weapon.

Table 21 - Class specification for ProjectileControlSystem

<<class>>

ProjectileControlSystem

Purpose Handles update of projectiles during gameplay and creates new projectiles

Functionalities
Provides a method for updating and drawing the projectiles, and a method to create
projectiles when requested

SPI’s IEntityProcessingService, ProjectileSPI

Page 27 of 80

5.3.7. Common

The Common component contains common interfaces, and common POJO’s, which most other game

components depend on.

The common interfaces include IEntityProcessingService, IPostEntityProcessingService, and

IGamePluginService described in section 4.2 Interface analysis.

The POJO classes represent custom data types; the most important being the World and GameData

classes. The World class contains a map of entities added to the game, and a map of textures representing

entities in the game, see Table 22.

Table 22 - Class specification for World class

<<class>>

World

Purpose Contains a list of active entities added to the game

Functionalities Getters and setters

The GameData class holds global game variables, e.g., score, health, screen messages, gamekeys, attacks

etc., see Table 23.

Table 23 - Class specification for GameData class

<< class >>

GameData

Purpose Contains information of the active game

Functionalities Getters and setters

The Attack class holds information about attacks, when to launch the attack compared to the game’s

start time and how many enemies should be deployed in an attack, see Table 24

Table 24 - Class Specification for Attack class

<< class >>

Attack

Purpose Contains information about an attack

Functionalities Getters and setters

Page 28 of 80

The PathDirection class contains information relating to the way in which the EnemyControlSystem

moves on the map. It contains a direction to move and a goal point where the direction should change.,

see Table 25.

Table 25 - Class specification for PathDirection class

<< class >>

PathDirection

Purpose Used by the entities to find direction

Functionalities Getters and setters

The entities are constructed using object composition with the Entity class as blueprint for all entities

in the game see Table 26.

Table 26 - Class specification for Entity class

<< class >>

Entity

Purpose
Contains common information of the entity, and a list of entity parts containing relevant
attributes

Functionalities Getters and setters

An EntityPart contains attributes and a process method if relevant. These are added to an Entity

according to its functionality. Each entity part implements the EntityPart interface.

Table 27 contains a list of classes implementing the EntityPart interface, and a description of the content.

E.g., the LifePart contains the life attribute of an entity, and a MovingPart handles the movement of

entities.

Table 27 - List of EntityPart classes

<< class >>

EntityPart
Purpose

LifePart Contains life of an entity

MovingPart
Entity movement and speed

Process method updates PositionPart

PathPart Information about the path the entity is to follow

PositionPart Contains information of the entities position and orientation

WeaponPart Contains information of the weapons range and speed of projectiles

Page 29 of 80

5.3.8. LibGDX

A component must be created that contains the LibGDX-packages, which is the graphical-user-interface

used in the project. LibGDX is intuitive and well documented and used in this semester. To represent the

entities etc. as images, sprite, and textures are used.

The texture decodes an image file and thereafter it is loaded into the GPU memory. I.e., it takes an image

and transforms it to be drawable.

The sprite wraps around a texture, and defines where it is going to be drawn, its position, etc.

To draw a sprite the batch must be used. All drawing in LibGDX must occur between a start and end call

on the batch object. [5]

The LibGDX TiledMap will also be used; it is composed of layers which have tiles.

5.3.9. Map

Each tile on the map will have a code representing the content of the field. Each field can be either grass,

path, tower, start tile or end tile, and will affect the properties of the game, see description in Table 28.

Table 28 - Description of tile value codes

Code Represents Description

2 End Tile Tile where enemies leave the map; health decreases

3 Grass Basic field on the map, that the player can move on

4 Path The path on the map, where the enemies and player can move

5 Start Tile Tile where enemies enter the map

6 Tower A field containing a tower

The map will be represented in a two-dimensional array, with each cell containing the codes of each tile.

When drawing the map, it will be built by individual images according to the cell.

This ensures flexibility so it’s possible to give the map a new visual identity by changing the images,

without altering the code. Furthermore, the size of the map can be adjusted by changing the dimension

of the array. An example of a 7x7 map consisting of tiles can be seen in Figure 8.

Page 30 of 80

Figure 8 - 7x7 map with field, path, tower, start and end tiles

An example of a 12 x 12 map containing field, path, end and start tiles, and towers generated with tiles

can be seen in Figure 9. To the right of the map is dedicated space for showing score, health, and money.

Figure 9 - 12x12 map

5.4. Interaction between Components
A component diagram visualizing the dependencies between the components can be seen in Figure 10.

The arrows indicates a dependency on the other component. For example, Common Map depends on

LibGDX.

Page 31 of 80

Figure 10 - Component dependencies

Common is the basis of most the components. It has the classes that most components need access to.

I.e., most components should have a dependency on this component.

5.5. Artificial Intelligence
Based on the analysis of different algorithms, A* is seen as the most optimal, and thereby it is used in

the project. A* is a variation of the Dijkstra algorithm with a heuristic function. The simplest heuristic,

and used in this project, is the straight-line distance heuristic, which calculates the length of a straight

line from current state to goal.

The goal is the tile defined in the map with the type of End. First step is therefore to get the end tile.

Next, the start of the search must be found, which is defined in the map as a tile with the type Start. The

Start tile is added to a list containing all unsearched tiles, now called fringe. While the fringe is not empty,

the tile with the lowest summed value, of the distance to the goal and the path distance, is selected and

searched.

The first step in the search is checking the type of the tile. If the type is other than Path, End or Start, the

tile is moved from the fringe to a list of already searched tiles, now called explored. If the type is End,

the path has been found and the search stops. If the type is path, the surrounding 4 tiles are examined.

Page 32 of 80

If any of them share coordinates with a tile in the fringe or explored and has a longer path distance, they

are skipped. If any share coordinates with a tile in the fringe, and has a lower path distance, it replaces

the tile in the fringe. If they are not explored and not in the fringe, they are added to the fringe.

The tile must contain four pieces of information:

• tile coordinates

• tile type

• parent

• path distance

The parent is the tile searched before the specific tile. This is used to trace back the path. The path

distance is the number of tiles on the path to the specific tile. This is used to find the shortest distance.

If the fringe is emptied without finding the End tile, null is returned. If the End is found, the path is

tracked back from the parent pointers, and a list of tile coordinates is returned.

The overall overview of finding the path can be seen on Figure 11, which shows the sequence diagram

for calculating the path.

Page 33 of 80

Figure 11 - Sequence diagram for calculating the path

Page 34 of 80

5.6. Entity Overview
A class diagram showing the inheritance between the entities in the system, and the provided methods

can be seen in Figure 12.

Figure 12 - Class diagram over entities

All the entities should be able to be drawn, and therefore, should all extend the Sprite class. This enables

them to be drawn, since it will give them the necessary attributes. More values are added in the Entity

class, such as a map of parts, and some attributes to define different things; for example, the sprite and

texture is used to draw it.

All the entities in the game then extend the entity class, and they have some additional methods, which

are overridden. For example, both draw and update are overridden. Some of them have more individual

attributes giving them the necessary functionality needed. For example, the tower has a buildCost.

Furthermore, there will be getters and setters which is implemented by the lombok library, which makes

code much cleaner and easier to read. There are just annotations over the class to replace all the getters

and setters. I.e., they are there, just not written explicitly in the class. The following annotations is used:

• @Getter

• @Setter

Page 35 of 80

6. Implementation
The following section is separated into the components that the system consists of. The implementation

of each component is described to the extent where it is relevant and not repeated.

6.1. Core
The Core module contains two classes GameInputProcessor and Game; these are responsible for

processing user input and running the game respectively.

6.1.1. GameInputProcessor

The game needs to be able to track user input through the keyboard. This has been done by creating the

class GameInputProcessor which extends InputAdapter, see Code snippet 1, which in turn implements

InputProcessor; both are part of LibGDX and uses an observer pattern for event handling.

The LibGDX interface InputProcessor is an interface containing all the methods need to handle the

different types of user input, keyboard, mouse etc. The class InputAdapter implements InputProcessor

and makes all the methods return false, this makes it possible to extend the InputAdaptor class and only

override the methods relevant for the game. Because this Tower Defence game only uses the keyboard

as input, only two methods are needed and therefor the approach of using InputAdapter instead of

InputProcessor is chosen. [6]

Code snippet 1 – The class GameInputProcessor and its constructor.
File: OSGiCore/src/main/java/dk/sdu/mmmi/cbse/Game.java

The GameInputProcessor has an instance of GameData, which has an instance of GameKeys. It is these

GameKeys in GameData that are changed by GameInputProcessor when a key is pressed or lifted. This

makes it possible for all components with a dependency on the Common component to access what

GameKey is pressed.

The value in GameKeys is updated through the two methods keyDown and keyUp in

GameInputProcessor.

public class GameInputProcessor extends InputAdapter {

 private final GameData gameData;

 public GameInputProcessor(GameData gameData) {

 this.gameData = gameData;

 }

 .

 .

 .

}

Page 36 of 80

Code snippet 2 – keyDown method used to set values of keys when a key on the keyboard is pressed. The dots represent code that
have been left out.

File: OSGiCore/src/main/java/dk/sdu/mmmi/cbse/Game.java

The keyDown method detects when a key is being pressed by setting the GameKeys variable value to

true, see Code snippet 2; the dots represent code that have been left out. The keyUp method is almost

identical to keyDown; the only difference is that is it sets the value to false. Without the keyUp method

the game keeps reading a key as pressed when it has been pressed once.

6.1.2. Game

The Game class is responsible for running the game. This is done by implementing the

ApplicationListener interface from LibGDX which hooks into the lifecycle of the game. The instance of

ApplicationListener is then passed to the LibGDX’s back-end Application, here LwjglApplication is used.

It is done by using the keyword this to refer to the current class. [7, 8]

Code snippet 3 - The init method creates an instance of LwjglApplication and passes it the current class as the implementation of
ApplicationListener

File: OSGiCore/src/main/java/dk/sdu/mmmi/cbse/Game.java

ApplicationListener contains the methods create, render, dispose, resize, pause, and resume. All of these

are overridden in Game, but only create and render are implemented, the rest have been left empty.

public boolean keyDown(int k) {

 if (k == Keys.UP) {

 gameData.getKeys().setKey(GameKeys.UP, true);

 }

 if (k == Keys.LEFT) {

 gameData.getKeys().setKey(GameKeys.LEFT, true);

 }

 .

 .

 .

 return true;

}

public void init() {

 LwjglApplicationConfiguration cfg = new LwjglApplicationConfiguration();

 cfg.title = "TowerDefense";

 cfg.width = SCREEN_WIDTH;

 cfg.height = MAP_HEIGHT;

 cfg.useGL30 = false;

 cfg.resizable = false;

 new LwjglApplication(this, cfg);

}

Page 37 of 80

Create method
The create method is called when the application is created, it is responsible for:

• Setting the initial values for GameData

• Loading the tiled map

• Setting the start time

• Creating the enemy attacks

• Creating the batch to hold the sprites

• Creating the BitmapFonts for text on the screen

• Creating the OrthgraphicCamera and placing it correctly on the screen

• Setting the InputProcessor to GameInputProcessor

• Adding sprites to textures

Render method
LibGDX does not have an explicit game loop, because it is event-driven by nature. The render method

works like the game loop, since it is called by Application every time rendering should be performed. All

game logic updates are done by this method. [7]

Code snippet 4 - The render method.

File: OSGiCore/src/main/java/dk/sdu/mmmi/cbse/Game.java

The render method sets some necessary LibGDX values, draws text to the screen, and updates the game

logic by calling the update method.

@Override

public void render() {

 Gdx.gl.glClearColor(0, 0, 0, 1);

 Gdx.gl.glClear(GL20.GL_COLOR_BUFFER_BIT);

 gameData.setDelta(Gdx.graphics.getDeltaTime());

 gameData.getKeys().update();

 mapRenderer.setView(camera);

 mapRenderer.render();

 batch.begin();

 drawFonts();

 batch.end();

 update();

}

Page 38 of 80

Update method
The update method is a private method in the Game class, created to separate out the logic needed to be

updated every time the render method is called.

Code snippet 5 - The update method is called by the render method and is responsible for updating the game logic.
File: OSGiCore/src/main/java/dk/sdu/mmmi/cbse/Game.java

The Update method tracks the need for a restart of the game. If the gameData variable life becomes zero

or below, the stop method is called for all IGamePluginServices, leading to all entities implementing this

interface being stopped and removed from the game. The user can then press Enter leading to restart

being set to true.

private void update() {

 boolean restart = false;

 if (gameData.getLife() <= 0) {

 // Stop all entities

 for (IGamePluginService iGamePluginService : gamePluginList) {

 iGamePluginService.stop(gameData, world);

 }

 // Set restart if enter is pressed

 if(gameData.getKeys().isDown(GameKeys.ENTER)){

 restart = true;

 }

 mapRenderer.render();

 }

 if (restart) {

 gameData.setPlayerDead(false);

 gameData.setScreenMessage("");

 create();

 for (IGamePluginService iGamePluginService : gamePluginList) {

 iGamePluginService.start(gameData, world, textures);

 }

 return;

 }

 // Update

 for (IEntityProcessingService entityProcessorService :

entityProcessorList) {

 entityProcessorService.process(gameData, world);

 entityProcessorService.draw(batch, world);

 }

 // Post Update

 for (IPostEntityProcessingService postEntityProcessorService :

postEntityProcessorList) {

 postEntityProcessorService.process(gameData, world);

 }

}

Page 39 of 80

When restart is true, the variable isPlayerDead in GameData is set to false, and the screen message is

removed by setting it to an empty string. The create method, which was called when the application

started, is called again, and all values are set back to their original start values, excluding highest score.

After the evaluation of restart, a loop iterates through all entities that implements

IEntityProcessingService and calls the process and draw methods. This is followed by another loop

which iterates through all entities that implements IPostEntityProcessingService and call the process

method. This order makes it possible to first change the states of entities and then immediately after

process the consequences of those changes, instead of waiting for the next call to render.

An example of this being done in the code is movement processed by IEntityProcessingService, and

collision being processed by IPostEntityProcessingService; this leads to a smooth gameplay with less

visible overlap between entities before collision is detected.

6.2. Common
The common module primarily contains POJO’s, and interfaces used by all the other components, see

section 5.3.7, and is therefore not necessary to describe in detail.

6.3. Common components
The common components are the following:

• CommonEnemy

• CommonPlayer

• CommonMap

• CommonProjectile

• CommonTower

All the above components are almost identical except CommonTower, CommonMap, and

CommonProjectile, which have a service-provider interface that follows the exact contract defined in

design. I.e., it is just an interface class with the methods described earlier. For example, the following

code-snippet shows the ProjectileSPI:

Code snippet 6 - ProjectileSPI interface
File: OSGiCommonProjectile/src/main/java/dk/sdu/mmmi/cbse/commonprojectile/ProjectileSPI.java

Each interface has the methods described earlier, which is why only one is shown here.

public interface ProjectileSPI {

 void createProjectile(Entity e, GameData gameData, World world);

}

Page 40 of 80

The entity classes, here Player, Enemy, Projectile, and Tower, extend the Entity class, which contains

some methods that are identical. For example, Code snippet 7 shows the Player entity.

Code snippet 7 - The Player class
File: OSGiCommonPlayer/src/main/java/dk/sdu/mmmi/cbse/commonplayer/Player.java

As can be seen, the Player class contains the methods from the Entity class, and this is the same method

for Enemy, Tower, and Projectile.

6.4. Collision
The CollisionManager class implements the IPostEntityProcessingService, since this is run once all the

entities have been updated, to ensure correct collision happens. It starts by getting all the entities from

the world, and thereafter iterating over all entities in a nested for loop. Thereby, all entities are checked

against each other. This can be seen on Code snippet 8. There are some scenarios in which no changes

should be made; these are:

• If one of the entities is a tower, since towers should not be affected by collisions

• If the entities are of the same type, e.g. two enemies should not damage each other

• If it is a player and projectile; projectiles should not damage the player

These conditions are checked first, whereafter it gets the position of the entities. If the distance between

the two entities is less than their radius added together, then they are colliding, as mentioned in section

5.3.5.

The LifePart of the first entity is then received, whereafter different things can happen depending on the

entity type:

public class Player extends Entity {

 public Player(Sprite sprite, Types type) {

 super(sprite, type);

 }

 @Override

 public void draw(Batch batch) {

 batch.begin();

 update(Gdx.graphics.getDeltaTime());

 super.draw(batch);

 batch.end();

 }

 public void update(float delta) {

 PositionPart positionPart = this.getPart(PositionPart.class);

 this.setPosition(positionPart.getX(), positionPart.getY());

 this.setRotation((positionPart.getAngle() + 270) % 360);

 }

}

Page 41 of 80

• If it is a projectile, it is removed; a projectile should only hit once

• Life is decreased by one for the rest of the cases, and if its life is zero or less, the entity dies and

is removed. Further processing is done based on some cases:

o If it is the player, the player is set as dead in the GameData

o If it is an enemy, the score goes up since an enemy was killed. Thereby, the game data

score is increased.

Code snippet 8 - Process method from collision
File: OSGiCollision/src/main/java/dk/sdu/mmmi/cbse/collision/CollisionManager.java

@Override

public void process(GameData gameData, World world) {

 ArrayList<Entity> entities = new ArrayList<>(world.getEntities());

 for (Entity iEntity : entities) {

 for (Entity oEntity : entities) {

 if (iEntity.getType() == Types.TOWER || oEntity.getType() ==

Types.TOWER)

 continue;

 if (iEntity.getType() == oEntity.getType()) //Should not collide

when equal type

 continue;

 if ((iEntity.getType() == Types.PLAYER || oEntity.getType() ==

Types.PLAYER) && (iEntity.getType() == Types.PROJECTILE || oEntity.getType()

== Types.PROJECTILE))

 continue; //Player and projectile should not collide

 // Get the position part for the entities

 PositionPart iPosition = iEntity.getPart(PositionPart.class);

 PositionPart oPosition = oEntity.getPart(PositionPart.class);

 // Calculate distance between two entities

 double distance = Math.sqrt(Math.pow((iPosition.getX() -

oPosition.getX()), 2) + Math.pow((iPosition.getY() - oPosition.getY()), 2));

 if (distance < (iEntity.getRadius() + oEntity.getRadius())) {

//Collides

 LifePart iLifePart = iEntity.getPart(LifePart.class);

 if (iEntity.getType() == Types.PROJECTILE)

 world.removeEntity(iEntity);

 iLifePart.setLife(iLifePart.getLife() - 1);

 if (iLifePart.getLife() <= 0) {

 if (iEntity.getType() == Types.PLAYER)

 gameData.setPlayerDead(true);

 // checking if enemy is dead & updates score

 if (iEntity.getType() == Types.ENEMY)

 gameData.setScore(gameData.getScore() + 1);

 world.removeEntity(iEntity);

 }

 }

 }

 }

}

Page 42 of 80

6.5. Map
The map component is based on the LibGDX TiledMap class. A Tileset containing the individual tiles

described in section 5.3.9 is saved as Tiles.tsx, containing the tile id and property description of each

tile.

The two-dimensional map array is defined in Map.tmx with cells encoded as csv and metadata about the

map. E.g., dimensions and tilesize.

<?xml version="1.0" encoding="UTF-8"?>
<map version="1.8" tiledversion="1.8.4" orientation="orthogonal"

renderorder="right-down" width="12" height="12" tilewidth="58" tileheight="58"

infinite="0" nextlayerid="2" nextobjectid="1">
<tileset firstgid="1" source="Tiles.tsx"/>
<layer id="1" name="Tile Layer 1" width="12" height="12">
 <data encoding="csv">
3,3,3,3,3,3,3,3,3,3,3,3,
3,3,3,3,3,3,3,3,3,3,3,3,
3,3,4,4,4,4,4,4,4,4,4,5,
3,3,4,3,3,3,3,3,3,3,3,3,
3,3,4,3,3,3,3,3,3,3,3,3,
3,3,4,4,4,4,3,3,4,4,4,3,
3,3,3,3,3,4,3,3,4,3,4,3,
2,4,4,3,3,4,4,4,4,3,4,3,
3,3,4,3,3,3,3,3,3,3,4,3,
3,3,4,3,3,3,3,3,3,3,4,3,
3,3,4,4,4,4,4,4,4,4,4,3,
3,3,3,3,3,3,3,3,3,3,3,3
</data>
</layer>
</map>

Code snippet 9 - Map.tmx, containing metadata of map
File: runner/Map.tmx

The map is loaded when the game is created in the create method in Core component’s Game class and

added to the map component from Core.

public void create() {
.
.
 map.setTiledMap(new TmxMapLoader().load("Map.tmx"));
 mapRenderer = new OrthogonalTiledMapRenderer(map.getTiledMap());
.

Code snippet 10 - loading of map in create
File: OSGiCore/src/main/java/dk/sdu/mmmi/cbse/Game.java

The map contains two sets of coordinate systems; tile-coordinates, which refers to the tiles of the map,

in this case 12 x 12, and map-coordinates used for positioning of entities, that refers to the actual pixels

on the screen in this case 696 x 696px,

Page 43 of 80

The mehods in the map interface is implemented using the main properties from the map, which can be

achieved by methods supplied by LibGDX. An example is the getTileTypeByCoor function, which returns

the tile property of a tile at a map coordinate (x, y).

public String getTileTypeByCoor(int x, int y) {
 //get first layer of map
 TiledMapTileLayer layer = (TiledMapTileLayer) tiledMap.getLayers().get(0);

 // Get tile at position (x,y)
 Point point = getTileCoordinates(x, y);
 TiledMapTile tile = layer.getCell(point.x, point.y).getTile();

 // getting properties of tile
 return tile.getProperties().get("Tag", String.class);
}

Code snippet 11 - method to get tile type by coordinate
File: OSGiMap/src/main/java/dk/sdu/mmmi/cbse/map/MapType.java

The first layer of the map is accessed, as the game only contains one layer. The map coordinates are

translated into tile coordinates, and the specific tile is accessed. Finally, the property for the tile is

returned.

6.6. Tower
A tower’s primary purpose is shooting at enemies. To select the correct enemy to target, the tower uses

an evaluation, getHeuristic. which calculates a value for an enemy by the parameters described in the

analysis, see section 5.3.2. The distance is calculated using various helper methods not described here

e.g., getDistanceToEnd. Each value is weighted with a weight to balance the result, so the preferred

enemy is selected.

private float getHeuristic(Enemy enemy, Tower tower){
 // calculate heuristics of an enemy
 LifePart enemyLifePart = enemy.getPart(LifePart.class);
 float enemyHeuristic = 0;
 enemyHeuristic += weightDistanceToEnd * getDistanceToEnd(enemy);
 enemyHeuristic += weightDistanceToStart * getDistanceToStart(enemy);
 enemyHeuristic += weightDistanceToTower * getDistanceBetweenEntities(enemy,

tower);
 enemyHeuristic += weightLife * enemyLifePart.getLife();
 return enemyHeuristic;
}

Code snippet 12 - get heuristic from enemy and tower
File: OSGiTower/src/main/java/dk/sdu/mmmi/cbse/tower/TowerControlSyste.java

Page 44 of 80

To be able to compare the heuristics of two enemies an enemy comparator is used; returning a negative

integer if enemy1 has the lowest heuristic and positive if enemy2.

class enemyComparator implements Comparator<Enemy> {

 @Override
 public int compare(Enemy enemy1, Enemy enemy2) {
 float heuristicEnemy1 = getHeuristic(enemy1, (Tower) selectedTower);
 float heuristicEnemy2 = getHeuristic(enemy2, (Tower) selectedTower);
 return (int) (heuristicEnemy1 - heuristicEnemy2);
 }
}

Code snippet 13 - comparator for enemy
File: OSGiTower/src/main/java/dk/sdu/mmmi/cbse/tower/TowerControlSystem.java

A PriorityQueue<E> of reachable enemies is used, as it implements the desired min-heap described in

section 5.3.2. It is initialized with the initial capacity of 10 and uses the enemyComparator for the

ordering.

The list of entities belonging to the Enemy class is iterated, and each enemy within the towers range is

added to the PriorityQueue of reachable enemies, using the add method.

List<Entity> enemies = world.getEntities(Enemy.class);
PriorityQueue<Enemy> reachableEnemies = new PriorityQueue<>(10, new

enemyComparator());

if (enemies != null) {
 for (Entity enemy : enemies) {
 int distance = getDistanceBetweenEntities(enemy, tower);
 if (distance < weaponPart.getRange()){
 reachableEnemies.add((Enemy) enemy);
 }
 }
}

Code snippet 14 - Adding to priority queue
File: OSGiTower/src/main/java/dk/sdu/mmmi/cbse/tower/TowerControlSystem.java

To select the enemy to target, the peek method is used to get the first element in the queue, which will

have the lowest heuristic value due to the min heap property; first element in a min-heap is the smallest.

Enemy selectedEnemy = reachableEnemies.peek();

Code snippet 15 - Selected enemy
File: OSGiTower/src/main/java/dk/sdu/mmmi/cbse/tower/TowerControlSystem.java

6.7. Projectile
The projectile component has the class ProjectileControlSystem, which implements the

IEntityProcessing and ProjectileSPI interfaces. The IEntityProcessing interface enables it to get

processed by the core. The process method iterates over all the projectile entities and processes the

Page 45 of 80

MovingPart of the projectile. Furthermore, it checks whether the projectile has reached the end of its

range and checks if it is outside the map. In either case it is removed from the world, as can be seen in

Code snippet 16.

Code snippet 16 - Process in projectile
File: OSGiProjectile/src/main/java/dk/sdu/mmmi/cbse/projectile/ProjectileControlSystem.java

It has a draw method, which all entities must have to be drawn; the method simply iterates over all the

projectiles, and calls their draw method, which is then handled in their common component. It also has

a createProjectile method which creates the projectile. The start coordinates for the projectile and which

direction it should move is derived from the entity creating the projectile. Thereafter, it gets the texture

for the projectile, creates the sprite, adds the parts to the projectile, and adds it to the world, as can be

seen in Code snippet 17.

@Override

public void process(GameData gameData, World world) {

 for (Entity projectile : world.getEntities(Projectile.class)) {

 PositionPart positionPart = projectile.getPart(PositionPart.class);

 MovingPart movingPart = projectile.getPart(MovingPart.class);

 WeaponPart weaponPart = projectile.getPart(WeaponPart.class);

 movingPart.process(gameData, projectile);

 // checks if it has reached it's range

 if (positionPart.getDistanceFromOrigin() > weaponPart.getRange()) {

 world.removeEntity(projectile);

 }

 // check if outside map

 float radius = projectile.getRadius();

 float centerX = positionPart.getX() + map.getTileSize()/2f;

 float centerY = positionPart.getY() + map.getTileSize()/2f;

 if (!(map.isInsideMap(centerX+2+radius, centerY+2+radius))) {

 world.removeEntity(projectile);

 }

 if (!(map.isInsideMap(centerX+2-radius, centerY+2-radius))) {

 world.removeEntity(projectile);

 }

 }

}

Page 46 of 80

Code snippet 17 - Creating projectile
File: OSGiProjectile/src/main/java/dk/sdu/mmmi/cbse/projectile/ProjectileControlSystem.java

6.8. Enemy
The enemy component is responsible for creating the enemies on the map, sending enemies through the

map, and navigating them.

6.8.1. Path Navigation

The enemy module is given a path of tile coordinates. This must be converted into enemy navigation.

For this, the tiles are processed two by two to find the correct direction to walk, to get from the first tile

to the next as seen in Code snippet 18. This direction is saved in a PathDirection POJO along with the

coordinates of when the direction should change again. When the entity reaches this goal, it will take

directions from the next PathDirection object in the stack.

Code snippet 18 - getting the path direction
File: OSGiEnemy/src/main/java/dk/sdu/mmmi/cbse/enemy/EnemyControlSystem.java

To check when the goal is reached, the method CheckEnemyOutOfBounds is used, as seen in Code snippet

19. The method takes 2 parameters; where the entity is, the PositionPart, and where the goal is, the

PathPart. There need to be different checks for different directions. If the entity is moving left, the

// getting sprite for projectile

Texture texture = world.getTextureHashMap().get(Types.PROJECTILE);

Sprite sprite = new Sprite(texture);

sprite.setCenter(sprite.getHeight() / 2, sprite.getWidth() / 2);

// creating new projectile with entity parts and add to world

Entity projectile = new Projectile(sprite, Types.PROJECTILE);

projectile.setRadius(4);

projectile.add(new MovingPart(projectileSpeed, true));

projectile.add(new PositionPart(projX, projY, radians));

projectile.add(new LifePart(1));

projectile.add(weaponPart);

world.addEntity(projectile);

protected Stack<PathDirection> getPathDirectionStack(ArrayList<Point> path) {

 Stack<PathDirection> pathDirections = new Stack<>();

 for (int x = 1; x < path.size(); x++) {

 Point currentTile = path.get(x);

 Point newTile = path.get(x - 1);

 PathDirection direction = new PathDirection(getDirection(currentTile,

newTile), map.getTileCenter(newTile));

 pathDirections.add(direction);

 }

 return pathDirections;

}

Page 47 of 80

method checks if it has reached the right side of the goal. Opposite, if it is moving right, the method

checks if it has reached the left side of the goal, and so forth.

Code snippet 19 - checking if enemies is out of bounds

File: OSGiEnemy/src/main/java/dk/sdu/mmmi/cbse/enemy/EnemyControlSystem.java

6.8.2. Asynchronous navigation

The path navigation described in section 6.8.1 requires a certain amount of computation. The game is

unwilling to draw sufficient resources from the system running it and so the path computation causes

lag. This is less relevant for computations happening before the introduction of a new entity than for

computations recurring through the lifecycle of an entity. Nevertheless, it is an issue and should be

addressed sooner rather than later. The solution used is a ThreadPool seen in Code snippet 20 where

the creation of enemies is added as tasks. This ensures a smooth-running game, as the processing can

continue while the heavier computation finishes.

Code snippet 20 - Committing to the threadpool
File: OSGiEnemy/src/main/java/dk/sdu/mmmi/cbse/enemy/EnemyControlSystem.java

private boolean checkEnemyOutOfBounds(PositionPart positionPart, PathPart

pathPart){

 if (positionPart.getAngle() == PositionPart.left && positionPart.getX() >

pathPart.getGoal().x)

 return false;

 if (positionPart.getAngle() == PositionPart.right && positionPart.getX()

< pathPart.getGoal().x)

 return false;

 if (positionPart.getAngle() == PositionPart.down && positionPart.getY() >

pathPart.getGoal().y)

 return false;

 if (positionPart.getAngle() == PositionPart.up && positionPart.getY() <

pathPart.getGoal().y)

 return false;

 return true;

}

for (Entity enemy : enemies) {

 executor.submit(() -> {

 PathPart pathPart = enemy.getPart(PathPart.class);

 PositionPart positionPart = enemy.getPart(PositionPart.class);

 if(checkEnemyOutOfBounds(positionPart, pathPart)) {

 setNewEnemyPath(enemy, () -> goalReached(enemy, gameData,

world));

 }

 });

}

Page 48 of 80

6.9. Player
The Player component contains two classes: PlayerControlSystem and PlayerPlugin. It is based on the

Player defined in the CommonPlayer component, extending the Entity class from the Common

component.

The PlayerControlSystem implements the IEntityProcessingService interface and is responsible for

handling and processing any user inputs relating to controlling the Player in the game.

The draw method from the IEntityProcessingService interface is overwritten to loop through all entities

present in the world, find those that are of the Player class, and use the draw method defined in

CommonPlayer to render the necessary sprites.

The method handleInput, checks for user input that would affect the Player’s movements, here the arrow

keys, and adjusts the Player accordingly. If any of the arrow keys are pressed, the angle of the Player’s

PositionPart is updated to point in the indicated direction. The Player’s MovingPart is set to moving as

well, making it possible for the Player to move around the map. If any other keys are pressed, this

method will not affect the Player or its parts.

The PlayerControlSystem overwrites the process method from the IEntityProcessingService interface.

This method handles any key input given by the user, using the predefined key mapping and the

handleInput method to determine the correct response.

This includes moving the Player around the map, by updating the Player’s MovingPart and PositionPart,

but also the placement of towers on the map. To do this, the PlayerControlSystem is injected with an

instance of IMap and a TowerSPI, from the Map component and Tower component, respectively.

This allows the PlayerControlSystem to place a new tower on the map, by calling the TowerSPI, and

utilizing its createTower method. Likewise, it is possible to use the changeTileType method from the

IMap interface to change the tile the Player is positioned on from a Grass tile to a Tower tile. Part of the

code for this action can be found in Code snippet 21.

Page 49 of 80

Code snippet 21 - Creating the tower from player
File: OSGiPlayer/src/main/java/dk/sdu/mmmi/cbse/player/PlayerControlSystem.java

The process method in the PlayerControlSystem then adds the newly created tower to the world, and

handles updating the money attribute found in GameData, to reflect the cost of building a tower.

The second class in the Player component is the PlayerPlugin. This class implements the

IGamePluginService interface and is responsible for starting and stopping the component. The start

method handles the creation of a Player object based on predefined values, as well as adding the Player

object to the world upon creation of the game.

Likewise, the stop method removes the Player from the world, and is used if the component is

deactivated during runtime and once the game ends.

6.10. Test
The test component is created to make it possible to run integration tests. Integration tests cannot be

placed inside any other module since it must test the system as a whole. Therefore, it is placed in its own

component, so it can easily be changed, and is not dependent on other implementations. The component

only contains a test folder with the necessary dependencies to run those tests.

6.11. FileHandler
The FileHandler is created to help with accessing files from the project using LibGDX. LibGDX has an

internal filesystem, which can cause problems finding the files in the resources folder, because LibGDX

looks elsewhere in an internal assets folder. To solve this problem, a component was created, that

helped locating the files in the correct path. It contains all the relevant resources, and a way to access

…

if (gameData.getKeys().isDown(SPACE) && towerSPI != null) {

 Tower tower;

 Point coordinates = map.mapCoorToTileCoor(positionPart.getX(),

positionPart.getY());

 tower = (Tower) towerSPI.createTower(gameData, world, coordinates.x,

coordinates.y);

 if (tower != null && tower.getBuildCost() > gameData.getMoney()) {

 int buildCost = tower.getBuildCost();

 tower = null;

 map.changeTileType(coordinates.x, coordinates.y, "Grass");

 gameData.setScreenMessage("You don't have enough \nmoney to buy a

Tower \n\nTower cost: " + buildCost);

 }

…

Page 50 of 80

them by the file name. This FileHandler extends FileHandle from the LibGDX library and overrides the

readBytes and read methods.

6.12. LibGDX
The LibGDX component contains all the dependencies necessary from LibGDX framework. These are

packed into a module, since it is easier and better to have a dependency on another module, than on all

the LibGDX packages, as it would have to be specified in POM files of each module.

6.13. The final game
The final game ended up looking like Figure 13.

Figure 13 - The final game

The design led to the implementation of the game, which ended up looking like the above. It resembled

much the game described in the analysis and design, which was expected and desired.

Page 51 of 80

7. Test
The following section explains how the Must-Have requirement have been tested. The framework used

for testing is Mockito together with JUnit, which provides powerful mocking and hooking. Once all tests

pass, it is verified that the code executes as expected, and the requirements are fulfilled.

The non-functional requirements are fulfilled:

• NF1: The project uses OSGi as the component framework, which can unload and load

components during runtime. Furthermore, the OSGi framework has a ClassLoader in each

component, and supports versioning

• NF2: Contains data structures that are well defended and documented, in this project min-heap

is used

• NF3: It contains algorithms for calculating which enemy to select and the min-heap methods are

used

• NF4: The AI uses an A* algorithm

Thereby, it can be concluded that the non-functional requirements are fulfilled.

The following sections tests the different functional requirements.

All the tests are run when the game is started, to ensure that the game functions as expected.

7.1. Dynamic loading and unloading
Requirement: F1 - Must be possible to dynamically load/unload Player, Enemy, Weapon.

File: OSGiTest/src/test/java/dk/sdu/mmmi/cbse/ApplicationITest.java

Type: Integration test

Description:

To fulfill the requirement it must be possible to load and unload the Player, Enemy and Weapon , here

called Projectile, components during runtime. This can be tested by hooking into the BundleContext API,

which is injected by Pax Exam; Pax Exam is a testing framework for OSGi bundles, which allows to access

the bundles and load and unload them without running the whole application.

Preconditions:

The modules are compiled

Page 52 of 80

Test steps:

1. At start, the bundles are loaded into Pax Exam container, as seen in Code snippet 22.

Code snippet 22 - Loading the bundles
File: OSGiTest/src/test/java/dk/sdu/mmmi/cbse/ApplicationITest.java

2. Thereafter, the bundles are loaded in, and the test method can execute. For example, it tests that

the bundle is active, and when it is stopped, it is tested that the bundle has stopped.

Code snippet 23 - Test for unloading and loading enemy
File: OSGiTest/src/test/java/dk/sdu/mmmi/cbse/ApplicationITest.java

3. Tests for uninstalling; uninstalling the component, and thereafter verifying it is uninstalled

4. Tests for installing; reinstalling the component, and thereafter verifying it is installed again

//importing all the bundles

@Configuration

public static Option[] configuration() {

 return options(

 provision(

 bundle(toFileURI("bundles/OSGiLibGDX.jar")),

 bundle(toFileURI("bundles/OSGiPlayer.jar")),

 bundle(toFileURI("bundles/OSGiEnemy.jar")),

 bundle(toFileURI("bundles/OSGiProjectile.jar")),

 bundle(toFileURI("bundles/OSGiCore.jar")),

 bundle(toFileURI("bundles/OSGiMap.jar")),

 mavenBundle("org.osgi", "org.osgi.compendium", "4.2.0"),

 mavenBundle("org.ops4j.pax.swissbox", "pax-swissbox-

tinybundles", "1.0.0")

)

);

}

@Test

public void Test_Loading_Unloading_Contains_Enemy() throws Exception {

 for (Bundle bundle_started : bundleContext.getBundles()) {

 if (bundle_started.getHeaders().get("Bundle-Name") != null &&

bundle_started.getHeaders().get("Bundle-Name").equals("OSGiEnemy")) {

 log.info("Bundle found: OSGiEnemy");

 if (bundle_started.getState() != Bundle.ACTIVE) {

 log.error("BUNDLE NOT ACTIVE");

 throw new Exception("NOT ACTIVE");

 }

 bundle_started.stop();

 log.info("Bundle stopped");

 if (bundle_started.getState() != Bundle.RESOLVED) {

 log.error("BUNDLE NOT RESOLVED");

 throw new Exception("NOT RESOLVED");

 }

Page 53 of 80

Expected result:

The test can be concluded to run as expected, since no exceptions are thrown, i.e., the test does not fail.

The same test is done for Enemy, Player, and Projectile.

7.2. Components
Requirement: F2 Must contain components Player, Weapon, Enemy, Map, Core

File: OSGiTest/src/test/java/dk/sdu/mmmi/cbse/ApplicationITest.java

Type: Integration test

Description:

The game must include the Player, Weapon, here Projectile, Enemy, Map and Core components, which

should be tested to verify that they are loaded in. This is done using Pax Exam, as described in 7.1. Code

snippet 22 shows how the modules are loaded in. Thereafter, the same tests are used for the Player,

Enemy and Projectile to verify whether they are loaded in; otherwise it would not be possible to

deactivate them. Code snippet 24 shows the test to confirm the game contains the map component.

Code snippet 24 - Test that it contains the map component
File: OSGiTest/src/test/java/dk/sdu/mmmi/cbse/ApplicationITest.java

Preconditions:

The modules are compiled

/**

 * Checks that the map-bundle exists

 * @throws Exception thrown if it fails

 */

@Test

public void containsMap() throws Exception {

 for (Bundle bundle : bundleContext.getBundles()){

 if(bundle.getHeaders().get("Bundle-Name") != null &&

bundle.getHeaders().get("Bundle-Name").equals("OSGiMap")){

 log.info("CONTAINS OSGiMAP");

 return;

 }

 }

 log.error("DOES NOT CONTAIN OSGiMAP");

 throw new Exception("DOES NOT CONTAIN MAP");

}

Page 54 of 80

Test steps:

1. The bundles from the bundlecontext are iterated over

2. It finds the bundle OSGiMap, and if it cannot find it, an exception will be thrown, i.e., the test fails.

If it does find it, the test terminates as successful

The same test is done for the Core-module, and thereby they are all tested.

Expected result:

The components are found, and no exceptions are thrown.

7.3. Player movement
Requirement: F3.1 A Player must be able to move around the map

File: OSGiPlayer/src/test/dk/sdu/mmmi/cbse/player/PlayerControlSystemTest.java

Type: Unit test

Description:

The PlayerControlSystem must be able to receive key input from the user playing the game and process

those, so that the MovingPart can update PositionPart with the Player’s new coordinates on the map.

Preconditions:

A Player is situated on a Map, within the Map’s boundaries.

Test steps:

1. Prepare mock objects for the test, including GameData, World, Entity, and Keys. An instantiated

PlayerControlSystem is also needed.

2. Ensure the mocked MovingPart- and PostitionPart objects are returned when the method

getPart is called on the mocked Entity object.

3. Ensure the mocked Entity object is returned when the method getEntities is called on the

mocked World object.

4. Ensure the mocked Keys object is returned when the method getKeys is called on the mocked

GameData object.

Page 55 of 80

5. Process the mocked GamaData and World objects. The process method for PlayerControlSystem

will then call the process methods for MovingPart and PositionPart, both of which are tested

separately in their own module.

a. MovingPartTest

i. Prepare mock objects for the test, including GameData, Entity, and IMap, as

well as instantiated instances of MovingPart and PositionPart.

ii. Assign the mocked IMap to the MovingPart and ensure true is returned when

isMoving is called on the MovingPart mock

iii. Ensure the instantiated PositionPart is returned when getPart is called on the

mocked Entity.

iv. Ensure the size of a maptile, here 58 px, is returned, when getTileSize is called

on the mocked IMap.

v. Ensure that isInsideMap returns true, when called on the mocked IMap.

vi. Call process on MovingPart, using the mocked GameData and Entity as

parameters.

vii. Compare the initial PositionPart with the Entity’s updated PositionPart to

ascertain whether MovingPart.process updated the coordinates for

PositionPart based on the Entity’s speed and direction.

b. PositionPartTest

i. Prepare for the test by instantiating a PositionPart, with known x and y

coordinates.

ii. Call setPosition on the instantiated PositionPart, using different x and y values.

iii. Extract the new x and y coordinates, ascertain whether they match the new x

and y values given in the previous call of setPosition.

6. Verify that the mocked MovingPart- and PositionParts each calls their process method once and

only once

Page 56 of 80

Code snippet 25 - Test player movement
File: OSGiPlayer/src/test/java/dk/sdu/mmmi/cbse/player/PlayerControlSystemTest.java

Expected result:

If the two verifications in step 6 both return true, the test will pass, meaning that the process methods

for MovingPart and PositionPart are each called once and only once. Should either or both process

methods not be called, or called multiple times, the test will fail.

7.4. Building towers
Requirement: F3.2 A player must be able to build towers

File: OSGiPlayer/src/test/java/dk/sdu/mmmi/cbse/player/PlayerControlSystem.java

Type: Unit test

Description:

It must be possible for the player to build towers. This can be done by verifying that the player calls the

TowerSPI to create a tower once the space bar is pressed.

Preconditions:

The TowerSPI is injected, and the player exists in the world

@Test

public void testPlayerMovement(){

 PlayerControlSystem playerControlSystem = new PlayerControlSystem();

 when(entity1.getPart(MovingPart.class)).thenReturn(movingPart);

 when(entity1.getPart(PositionPart.class)).thenReturn(positionPart);

 world.addEntity(entity1);

 when(world.getEntities(any())).thenReturn(new ArrayList<Entity>(){{

 add(entity1);

}});

 when(gameData.getKeys()).thenReturn(keys);

 playerControlSystem.process(gameData, world);

 verify(movingPart,times(1)).process(any(), any());

 verify(positionPart, times(1)).process(any(), any());

}

Page 57 of 80

Code snippet 26 - Test of place tower
File: OSGiPlayer/src/test/java/dk/sdu/mmmi/cbse/player/PlayerControlSystemTest.java

Test steps:

1. Mocking of objects are created, and thereafter, the mocked objects can be hooked into.

2. The class under test, PlayerControlSystem, is instantiated

3. The mocked TowerSPI and IMap are injected into the ControlSystem

4. The method process is called to start the method

5. It is verified that the TowerSPI has been called 1 time with the method createTower with any

arguments

6. To verify that the tower is placed correctly, it can be checked in the tests for tower whether the

tile changed to Tower. This can be seen on Code snippet 27. It verifies that the tile type is changed

to Tower.

@Test

public void placeTowerTest(){

 when(entity1.getPart(MovingPart.class)).thenReturn(movingPart);

 when(entity1.getPart(PositionPart.class)).thenReturn(positionPart);

 world.addEntity(entity1);

 when(world.getEntities(any())).thenReturn(new ArrayList<Entity>(){{

 add(entity1);

 }});

 PlayerControlSystem playerControlSystem = new PlayerControlSystem();

 playerControlSystem.setTowerSPI(towerSPI);

 playerControlSystem.setIMap(map);

 when(keys.isDown(anyInt())).thenReturn(true);

 when(gameData.getKeys()).thenReturn(keys);

 when(map.mapCoorToTileCoor(anyFloat(), anyFloat())).thenReturn(point);

 playerControlSystem.process(gameData, world);

 verify(towerSPI, times(1)).createTower(any(), any(), anyInt(), anyInt());

}

Page 58 of 80

Code snippet 27 - Test for placing tower
File: OSGiEnemy/src/test/java/dk/sdu/mmmi/cbse/enemy/EnemyControlSystemTest.java

Expected result:

The TowerSPI createTower method is called with arguments, and that the tile type is changed to Tower,

and thereby, a tower is created.

7.5. Enemy movement with AI
Requirements: F4.1 An Enemy must be able to move through the path on the map using an AI.

Description:

To fulfill this requirement, it is necessary that the EnemyControlSystem updates the MovingPart when

the process method is called. The MovingPart is used to update the Enemies position on the map, which

is updated using data calculated by an AI system.

7.5.1. EnemyControlSystem

File: OSGiEnemy/src/test/java/dk/sdu/mmmi/cbse/enemy/EnemyControlSystemTest.java

Type: Unit test

Preconditions: None

Test steps:

1. EnemyControlSystem is created

2. EnemyControlSystem instance is given a Mockito mock of IMap

3. On getCurrentAttack method called on GameData instance, return empty list.

@Test

public void placeTowerTest(){

 TowerControlSystem towerControlSystem = new TowerControlSystem();

 towerControlSystem.setIMap(mockMap);

 when(mockMap.getTileType(anyInt(), anyInt())).thenReturn("Grass");

 HashMap<Types, Texture> hashMap = new HashMap<Types, Texture>(){{

 put(Types.TOWER, texture);

 }};

 when(mockMap.tileCoorToMapCoor(anyFloat(), anyFloat())).thenReturn(new

Point(1,1));

 when(world.getTextureHashMap()).thenReturn(hashMap);

 when(mockMap.getTileSize()).thenReturn(58);

 // injecting mock dependencies

 towerControlSystem.setIMap(mockMap);

 towerControlSystem.createTower(gameData, world, 1, 1);

 verify(mockMap, times(1)).changeTileType(1,1, "Tower");

}

Page 59 of 80

4. On getEntities(Enemy.class) called on world, return list with Mockito instance of enemy

5. On getPart(MovingPart.class) called on enemy, return Mockito mock of MovingPart

6. Run process method on EnemyControlSystem instance.

7. Verify that the process method is called on MovingPart

Code snippet 28 - Test for EnemyMovement
file: OSGiEnemy/src/test/java/dk/sdu/mmmi/cbse/enemy/EnemyControlSystemTest.java

Expected result:

The process method on the MovingPart instance is expected to be called during the process method call

on EnemyControlSystem.

7.5.2. MovingPart

File: OSGiCommon/src/test/java/dk/sdu/mmmi/cbse/common/MovingPartTest.java

Type: Unit test

Preconditions: None

Test steps:

1. Mockito mocks have been created

2. A MovingPart instance is created with a speed of 1

3. It is given a Mockito mock of map.

4. It is set to “moving”

5. A position part is created with a known position

6. A Mockito mock of an Entity is given the PositionPart

7. The Entity instance is set to return the PositionPart when queried.

8. Map is set to return a specific tilesize

9. Entity is set to return a specific radius

@Test

public void testEnemyMovement(){

 EnemyControlSystem enemyControlSystem = new EnemyControlSystem();

 enemyControlSystem.setIMap(map);

 when(gameData.getCurrentAttacks()).thenReturn(new ArrayList<>());

 when(world.getEntities(Enemy.class)).thenReturn(new ArrayList<Entity>(){{

 add(enemy);

 }});

 when(enemy.getPart(MovingPart.class)).thenReturn(movingPart);

 enemyControlSystem.process(gameData, world);

 verify(movingPart, times(1)).process(any(), any());

}

Page 60 of 80

10. Map is set to always verify any position as inside the map's boundaries.

11. The Process method is called on MovingPart, with the Mockito Entity.

12. It is verified that the PositionPart is changed as a result

Code snippet 29 - Test for the process method in MovingPart
file: OSGiCommon/src/test/java/dk/sdu/mmmi/cbse/common/MovingPartTest.java

Expected result:

When the MovingPart process method is called, it updates the PositionPart values contained in the given

Entity.

7.5.3. Map

File: OSGiMap/src/test/java/dk/sdu/mmmi/cbse/map/MapTest.java

Type: Unit test

Preconditions: A map exists

Test steps:

1. Mockito mocks have been created

2. A list of expected path points is created

3. A Mockito mock of Map is changed to return values matching a drawn map

4. An instance of PathFinder is created

5. The calculatePath method is called on the PathFinder instance

@Test

public void movingPartProcessTest(){

 MovingPart movingPart = new MovingPart(1);

 movingPart.setIMap(map);

 movingPart.setMoving(true);

 PositionPart positionPart = new PositionPart(12, 10, 90);

 entity.add(positionPart);

 when(entity.getPart(PositionPart.class)).thenReturn(positionPart);

 when(map.getTileSize()).thenReturn(58);

 when(entity.getRadius()).thenReturn(5f);

 when(map.isInsideMap(anyFloat(), anyFloat())).thenReturn(true);

 movingPart.process(gameData, entity);

 PositionPart positionPart2 = entity.getPart(PositionPart.class);

 assertTrue(positionPart2.getX()!=12 || positionPart2.getY()!=10);

}

Page 61 of 80

6. It is checked that the path is not empty

7. It is checked that the returned path is identical to the expected path

Code snippet 30 - Test for A* algorithm
File: OSGiMap/src/test/java/dk/sdu/mmmi/cbse/map/MapTest.java

Expected result:

The calculatePath method returns, not just a usable path, but the shortest path.

7.5.4. Path to direction

File: OSGiEnemy/src/test/java/dk/sdu/mmmi/cbse/enemy/EnemyControlSystemTest.java

Type: Unit Test

Preconditions: None

@Test

 public void testAStar() {

 ArrayList<Point> expectedPath = new ArrayList<>();

 expectedPath.add(new Point(0, 2));

 expectedPath.add(new Point(1,2));

 expectedPath.add(new Point(2,2));

 expectedPath.add(new Point(3, 2));

 when(map.getStartTileCoor()).thenReturn(new Point(3,2));

 when(map.getEndTileCoor()).thenReturn(new Point(0,2));

 when(map.getTileType(0,2)).thenReturn("End");

 when(map.getTileType(1,1)).thenReturn("Path");

 when(map.getTileType(1,2)).thenReturn("Path");

 when(map.getTileType(1,3)).thenReturn("Grass");

 when(map.getTileType(2,1)).thenReturn("Path");

 when(map.getTileType(2,2)).thenReturn("Path");

 when(map.getTileType(2,3)).thenReturn("Grass");

 when(map.getTileType(3,1)).thenReturn("Grass");

 when(map.getTileType(3,2)).thenReturn("Start");

 when(map.getTileType(3,3)).thenReturn("Grass");

 when(map.getTileType(4,2)).thenReturn("Grass");

 PathFinder pathFinder = new PathFinder(map);

 ArrayList<Point> path = pathFinder.calculatePath();

 assertEquals(expectedPath.size(), path.size());

 for (int x = 0; x < path.size(); x++) {

 assertEquals(expectedPath.get(x), path.get(x));

 }

 }

Page 62 of 80

Test steps:

1. Mockito mocks have been created

2. An EnemyControlSystem instance is created

3. It is given a Mockito mock of IMap

4. Map is set to return (0,0) when prompted for the center of any tile, as the return value is

irrelevant to the test.

5. A list of Points is created.

6. The method getPathDirectionStack is called on the EnemyControlSystem instance with the list

7. It is verified that the returned stack of directions is the right length

8. It is verified that each direction is correct.

Code snippet 31 - Test of PathToDirectionConversion
file: OSGiEnemy/src/test/java/dk/sdu/mmmi/cbse/enemy/EnemyControlSystemTest.java

Expected result:

The method getPathDirectionStack maps a list of points, corresponding to tiles on the map, into

directions for the Enemy to follow

7.6. Health system
Requirements:

F3.5 A Player must have a health system

F4.2 An Enemy must have a health system

@Test

public void testPathToDirectionConversion(){

 EnemyControlSystem enemyControlSystem = new EnemyControlSystem();

 enemyControlSystem.setIMap(map);

 when(map.getTileCenter(any())).thenReturn(new Point(0,0));

 ArrayList<Point> input = new ArrayList<>();

 input.add(new Point(0,0));

 input.add(new Point(1,0));

 input.add(new Point(1,1));

 input.add(new Point(0,1));

 Stack<PathDirection> output = enemyControlSystem.getPathDirectionStack(input);

 assertEquals(3, output.size());

 assertEquals(output.pop().getDirection(), PositionPart.right);

 assertEquals(output.pop().getDirection(),PositionPart.down);

 assertEquals(output.pop().getDirection(),PositionPart.left);

}

Page 63 of 80

File: OSGiCommon/src/test/java/dk/sdu/mmmi/cbse/common/LifePartTest.java

Type: Unit test

Description:

Both Player and Enemy use LifePart as their health system; both are therefore tested through the

LifePart test.

LifePart is altered by collision, see 7.9

Preconditions: None

Test steps:

1. Create an entity and a LifePart

2. Check that LifePart’s getter method returns the expected value

3. Update the LifePart value using the setter method

4. Add LifePart to an entity

5. Get LifePart from the entity and check that the value is as expected

6. Update LifePart’s value through the entity

Code snippet 32 - Test of lifepart
File: OSGiCommon/src/test/java/dk/sdu/mmmi/cbse/common/LifePartTest.java

Expected result:

The LifePart getter method should return the value set by the LifePart setter method.

@Test

public void lifePartTest(){

 Entity entity = new Entity(new Sprite(), Types.PLAYER);

 LifePart lifePart = new LifePart(0);

 assertEquals(0,lifePart.getLife());

 lifePart.setLife(1);

 assertEquals(1,lifePart.getLife());

 entity.add(lifePart);

 assertEquals(1, ((LifePart) entity.getPart(LifePart.class)).getLife());

 ((LifePart) entity.getPart(LifePart.class)).setLife(2);

 assertEquals(2, ((LifePart) entity.getPart(LifePart.class)).getLife());

}

Page 64 of 80

7.7. Tower shooting
Requirement: F5.1: A Tower must be able to shoot at enemies

File: OSGiTower/src/test/java/TowerTest.java

Type: Unit test

Description:

The aim of the test is to verify if the createProjectile method is called on the projectile SPI. This is done

when the process method is called in the TowerControlSystem, and an enemy is within the towers range.

Preconditions:

An instance of ProjectileSPI.

An instance of Tower and Enemy, with a PositionPart containing the point (100,100)

A WeaponPart with a range of 30 for tower.

Test Steps:

1. Prepare test data, with mocks of entities described in preconditions

2. Create an instance of TowerControlSystem and inject the instance of ProjectileSPI

3. The process method of TowerControlSystem is called with the test data.

4. Verify the createProjectile method is called

Expected result:

As the tower and enemy instance is using the same PositionPart, the enemy is within the range of the

tower, so if the createProjectile is called, the test should pass.

7.8. Continues path in map
Requirement: F6.1 A Map must have a fixed path through the board

File: OSGiMap/src/test/java/dk/sdu/mmmi/cbse/map/PathTest.java

Type: Unit test

Description:

The map must have a continuous path from start to end for the enemies to move on.

This has been tested with a unit test

Page 65 of 80

Preconditions:

The map is a tmx file.

The following ids must be used to denote tile type: ‘start = 5’, ‘path = 4’ and ‘end = 2’.

The map only has one start tile and one end tile.

The map must be a rectangle.

Code snippet 33 - the while loop where adjacent points are explored
File: OSGiMap/src/test/java/dk/sdu/mmmi/cbse/map/PathTest.java

// While there is still unexplored path, look for adjacent paths

while (!unexploredPath.isEmpty()) {

 // Initialize current point to the first point in unexplored path

 final Point currentPoint = unexploredPath.get(0); // Breadth First

 final int x = currentPoint.x;

 final int y = currentPoint.y;

 // currentPoint is about to be explored, add it to explored path

 exploredPath.add(currentPoint);

 // Ternary statements to stay inside mapArray boundaries

 for (int dx = (x > 0) ? -1 : 0; dx <= ((x < mapArray.length - 1) ? 1 :

0); ++dx) {

 for (int dy = (y > 0) ? -1 : 0; dy <= ((y < mapArray[0].length - 1) ?

1 : 0); ++dy) {

 // Makes sure points diagonal to currentPoint is not explored

 if (dx == 0 ^ dy == 0) {

 final Point adjacentPoint = new Point(x + dx, y + dy);

 //Checks if adjacentPoint is a path and that it has not

already been explored

 if (mapArray[adjacentPoint.x][adjacentPoint.y].equals(path)

&& !exploredPath.contains(adjacentPoint)) {

 unexploredPath.add(adjacentPoint);

 }

 // Checks if the adjacentPoint is the end point

 if (mapArray[adjacentPoint.x][adjacentPoint.y].equals(end)) {

 // Adds it directly to exploredPath because there is no

reason to explore the end

 exploredPath.add(adjacentPoint);

 }

 }

 }

 }

 // currentPoint has just been explored, remove it from unexplored path

 unexploredPath.remove(currentPoint);

}

Page 66 of 80

Test steps:

1. Read the map from the tmx file into a 2D array

2. Verify that it has a start and end position and create them as Points.

3. Assert that both points are not null.

4. Create lists containing Points to hold explored- and unexplored path

5. Add the start point to the unexplored list.

6. Loop through the list of unexplored points, set the current point to the first element in the list,

and add it to the list of explored points.

7. Check if points adjacent to the current point are of type path, if they are, add them to unexplored

points, unless they already are in the explored points.

8. Check if the adjacent point is the end point, if it is, add it to explored points.

9. Remove the current point from the unexplored list.

10. Check that the last element in explored points is equal to the endpoint.

Expected result:

The last point in the list of explored points is the end point.

7.9. Collision detection
Requirement: F7.1 A Collision system must be able to detect collisions between the player, enemies,

and projectiles

File: OSGiCollision/src/test/dk/sdu/mmmi/cbse/collision/CollisionManagerTest.java

Type: Unit test

Description: There must be a collision system which can detect the collision between entities, and

furthermore, it handles the subtracting of life from LifePart. There are created different cases where the

entities are same object, same type etc., to ensure the system is running as expected.

Preconditions: There are two entities in the world in the same place, and i.e., colliding.

Page 67 of 80

Code snippet 34 - Subtracting life from entities that collides
File: OSGiCollision/src/test/java/dk/sdu/mmmi/cbse/collision/CollisionManagerTest.java

Test Steps:

1. Relevant mocks are created, and hooking is done

2. The collisionManager is instantiated

3. The process method is called on the instantiated collisionManager with the mock gameData and

mock world.

4. It should handle the collision

5. The lifeparts of the entities are checked to verify that they lost a life; they were 5 and 2 before.

6. It is checked that the expected methods are called

There are cases for normal collision, no collision, same type, collision with tower, collision between

player and projectile, and when an entity dies.

Expected result: The entities life is decremented and thereby the processing of collision has been done.

7.10. Generating projectiles
Requirement: F8.1 A Projectile must be able to be generated

File: OSGiProjectile/src/test/java/ProjectileTest.java

Type: Unit test

Description: It must be possible for entities equipped with a WeaponPart to generate new projectiles.

Preconditions: An Entity must have a WeaponPart and a dependency on ProjectileSPI.

…

when(entity2.getRadius())

 .thenReturn(5f);

collisionManager.process(gameData, world);

LifePart lifePartEntity1 = entity1.getPart(LifePart.class);

LifePart lifePartEntity2 = entity2.getPart(LifePart.class);

assertEquals(4, lifePartEntity1.getLife());

assertEquals(1, lifePartEntity2.getLife());

verify(world, atLeast(1)).getEntities();

verify(entity1, atLeast(2)).getPart(any());

verify(entity2, atLeast(2)).getPart(any());

…

Page 68 of 80

Test steps:

1. Prepare the necessary mocked objects, including Entity, PositionPart, WeaponPart, Texture, and

World, as well as instantiate a ProjectileControlSystem object.

2. Ensure valid coordinates and angle are returned, when getX, getY, and getAngle is called on the

mocked PositionPart.

3. Ensure the mocked PositionPart and WeaponPart are returned, when getPart is called on the

mocked Entity

4. Create a HashMap containing the Projectile type and the mocked Texture, and ensure this

HashMap is returned, when getTextureHashMap is called on the mocked World

5. Call the createProjectile method on the instantiated ProjectileConstrolSystem, using the mocked

Entity, GameData, and World objects

6. Verify that a Projectile has been added to the mocked World.

Expected result: If the verification confirms that a single Projectile entity has been added to the World

object, the test should pass. If, for some reason, the verification shows that zero or more than one

Projectile is added to the World, the test will fail.

7.11. Projectile movement
Requirement: F8.2 A Projectile must be able to move in a straight line with a defined speed

File: OSGiProjectile/src/test/java/ProjectileTest.java

Type: Unit test

Description: The test will verify that a projectile moves in a straight line from a specific point at a

defined speed. Both movements along the x and y axis will be asserted. The movement of a projectile is

handled when the process method is called in the ProjectileControlSystem.

Preconditions: An instance of a Projectile, with a position at (10,10) and angle of movement at 0 with

the speed of 6 is created, along with mocks of World, GameData, IMap.

Test Steps:

1. Prepare test data, with mocks of entities described in preconditions

2. Add the Projectile to the World

3. Create an instance of ProjectileControlSystem and inject the Map into it

4. Call the process method of ProjectileControlSystem

5. Assert that the sum of the original x-value and the speed matches the current x-value.

Page 69 of 80

6. Change the direction of movement to 90.

7. Call the process method of ProjectileControlSystem

8. Assert that the sum of the original y-value and the speed matches the current y-value.

Expected result: As the angle of movement is 0, it is expected that the projectile moves along the x-axis,

increasing the x-value with the given speed of 6, when the process method is called. When angle is

changed to 90 at step 6, the projectile will follow the y-axis and should increase by 6.

7.12. Projectile out of bounds
Requirement: F8.3 A Projectile must die when it reaches the end of the map

File: OSGiProjectile/src/test/java/ProjectileTest.class

Type: Unit test

Description: The projectile should disappear once it reaches the boundaries of the map.

Preconditions: The projectile exists and is outside the map/at the boundaries.

Code snippet 35 - Test when projectile is outside map
File: OSGiProjectile/src/test/java/ProjectileTest.java

Test steps:

1. Mocks are created

2. Projectile are added to a list that is used in the mocking

3. Hooking into the execution of the method

4. Ensuring that the isInsideMap returns false

5. Call the process method on the ControlSystem that is instantiated

6. Verify that the world removes the entity

@Test

public void TestProjectileOutsideMap(){

 ArrayList<Entity> projectiles = new ArrayList<Entity>(){{

 add(projectile);

 }};

 when(projectile.getPart(MovingPart.class)).thenReturn(movingPart);

when(projectile.getPart(PositionPart.class)).thenReturn(positionPartMock);

 when(projectile.getPart(WeaponPart.class)).thenReturn(weaponPartMock);

 when(worldMock.getEntities(Projectile.class)).thenReturn(projectiles);

 when(mapMock.isInsideMap(anyFloat(), anyFloat())).thenReturn(false);

 projectileControlSystem.process(gameDataMock, worldMock);

 verify(worldMock, times(2)).removeEntity(projectile);

}

Page 70 of 80

It is checked that the projectile is called to be removed two times, since in this case it reaches both the

bottom and top of the map and should be removed in either case, as can be seen on Code snippet 35.

Expected result: The projectile is removed from the world.

7.13. Game initialization
Requirement: F.9.1 The core must initialize and run the game

File: OSGiCore/src/test/java/GameTest.java

Type: Unit test

Description: The aim of the test is to ensure that the game is initialized. Since this is done by the LibGDX

framework, it is not possible to test it directly. LibGDX is a well-tested and well-documented framework,

and therefore, there is no need to test it. The method simply tests that the game gets registered as the

LibGDX ApplicationListener. Furthermore, it is to be tested that it updates the game flow, which is

handled by LibGDX, and therefore not tested either.

Preconditions: The game can be instantiated

Code snippet 36 - Testing that the game instance is found by LibGDX
File: OSGiCore/src/test/java/GameTest.java

Test steps:

1. The game is instantiated

2. It is asserted that the instantiated game is the one LibGDX uses, see Code snippet 36

Expected result: The LibGDX framework picks up the game since it implements ApplicationListener,

and thereby, LibGDX should see this as the game. Thereby, the method is expected to return the game.

I.e., the game is initialized and LibGDX also updates the game flow automatically.

@Test

void gameInitializedUpdated(){

 Game game = new Game();

 assertEquals(game, Gdx.app.getApplicationListener());

}

Page 71 of 80

7.14. Results
When the game is run, all the tests run successfully, since it would stop the execution otherwise. It can

therefore be concluded that the game behaves as expected. If bugs are introduced, it would stop the

execution of the game. Figure 14 shows that the tests are passed, since the build succeeded, and thereby

each component is built correctly. I.e., all the tests have passed.

Figure 14 - Test results

Page 72 of 80

8. Discussion
The following sections discuss different aspects that could be improved or done different, but also

whether the requirements were fulfilled, and how further maintenance could be done.

8.1. Requirements
The project solved the problem of dynamic unloading and loading by using the Felix gogo shell. It is

thereby possible to install new modules by moving them into the bundles folder, after which

loading/unloading is possible. It could be possible by a graphical user interface, but this was not seen as

something that would contribute to the final product, and not a requirement, and therefore, this has not

been implemented. The requirement about unloading/loading is fulfilled.

The Must-have and Should-have requirements have been fulfilled according to the tests. There are some

Could-have and Will-Not-Have requirements which can be fulfilled if future development of the game

would happen. Components can also easily be changed by just providing the service-provider interface,

which is the essence of component frameworks. There are a lot of opportunities to extend the game; for

example, different types of enemies and towers could be added, more advanced levels etc.

The A* AI is implemented, and it is documented using algorithms. Furthermore, algorithms and data

structures are used for the min-heap, and therefore, these requirements are also fulfilled.

8.2. Test
The tests should be extended to support more cases. Generally, it should follow boundary cases, and

tests should be made for a lot more cases. This was not done in all cases because of the time constraints.

It would give a higher code quality and ensure better verification. Furthermore, when changes are made,

it would ensure that the system would not break down, and the bugs would be caught before the game

was even started. Many of the cases are tested though, and a lot of bugs would be caught. It is mostly

edge cases that could potentially break the game.

8.3. Component framework
It would be more relevant to use a component framework like Spring, which is much more used in the

industry and much easier to write. Generally, the code is much cleaner. This was not possible since one

of the requirements for the project was that it must be possible to dynamically unload and load

components, which Spring does not allow. An argument could be made that this dynamic loading and

unloading is not relevant to the performance and playability of the game itself, it is mainly a learning

objective that the game must fulfill.

Page 73 of 80

Another component framework that could be relevant is the java-modules framework that came with

JDK 9. This was not an option to choose in the project, as it also does not support dynamic unloading

and loading, but could be more relevant in terms of gaining experience with newer frameworks.

Additionally, it would solve many of the problems that had to be overcome in the start of the process;

for example, correct dependencies of OSGi were a major issue.

An old version of LibGDX with newer Java libraries caused problems, and the OSGi framework together

with LibGDX bound it to be on JDK 1.8. I.e., it is very outdated, and should be updated for better

maintenance and to protect against deprecation and old bugs that are fixed in newer versions.

Furthermore, an issue which has given a lot of problems is that LibGDX is not designed to be used for

components. It is based on a monolithic game, which is why there were many issues with using LibGDX

over many components. The time could therefore have been spent elsewhere to improve testing etc.

Another game framework could have been used, but this was not done, since the only game framework

introduced in the lectures has been LibGDX. To not spend too much time learning another game

framework, which is not the goal of the semester project, LibGDX was used.

8.4. Artificial Intelligence
Arguments could be made that using artificial intelligence for this game is overkill, at least in the way it

is utilized in this project. The pathfinding algorithm in the Enemy component could easily be replaced

by a path attribute in the Map component and have the Enemy access this during runtime. This would

increase the requirements for any future alternative Map components, but this path attribute would be

a part of the map interface, which any new Map component would need to adhere to in any case.

By using a fixed path registered in the Map component, the game would need less resources in terms of

processing power, as the number of calculations needed will drastically decrease.

Alternatively, artificial intelligence could be made more relevant by changing the structure of the Map

component. If, instead of using a fixed map, the map was randomly generated each time the Map

component is started, using a pathfinding algorithm would make more sense, as there would not be a

predefined path to store in the Map component.

Another way to use artificial intelligence and maintain a fixed map, would be to change the layout of the

map. If, instead of the enemy being restricted to only walk on path tiles, the enemy could walk on any

tile, except barrier tiles, there would not be one single correct path for all enemies to take. Here different

heuristics could be introduced, to influence a singular enemy’s path, such as distance to end tile, distance

to player, and distance to towers, making it possible for an enemy to find either the shortest or the least

dangerous path.

Page 74 of 80

There is a long-term opportunity to use artificial intelligence to optimize the heuristics for the towers’

selection of enemies. After each game, it could check how many enemies were killed or came through

the map, and use that data to adjust the weights of the different parameters, deciding which enemy to

target. This could be taking the one with the most health, the enemy closest to the end etc. Thereby, the

tower would get increasingly more intelligent for each game played.

8.5. Maintainability
Since OSGi is used, it is easy to maintain the system, if it would be running all the time. If a module is not

working as expected, it can simply be unloaded, after which a new module could be installed and started.

This can all happen while the application is running. Therefore, maintainability is easier, which is one of

the primary reasons to use OSGi. Updates to components can be done in the same manner. Simply

removing the old component and inserting the new component will be all it takes to update.

It is simple to develop new components to replace older ones, since they would just have to implement

the service-provider interfaces already defined. Thereby, further development is made easy, and

changing many of the components will not ruin the game.

The game can continue to operate, even when some components are unloaded. The functionality of an

unloaded component is of course not present, but it is still possible for the game to continue operating

without failures, as it is checked if service-provider interfaces are provided before each use.

8.6. Importance of predefined interface contracts
During development it was decided that the map had to be a separate component instead of included in

the Common component, where the GameData class would contain the map. This was changed due to

the requirements, specifically F2, and the possible flexibility of being able to change the map.

Since this was done in the middle of the development, it made the interface contract unstable. This made

it contain too many methods and made it complex to refactor and develop, which shows how important

it is to have good, predefined contracts. A lot of code was duplicated, which then had to be refactored.

Had the interface contract been stable from the beginning, it would have made the development much

easier, as with the other interface contracts.

Page 75 of 80

9. Conclusion
A functional Tower Defense 2D game has been created containing all the required components; Map,

Enemy, Player, Tower, Projectile, and Core as derived from the project description in section 2.

Artificial intelligence has been used for finding a path on the map using the A* algorithm as seen in

section 4.3, and further AI could be used to optimize which enemy a tower is targeting, as described in

section 8.4.

The use of a priority queue data structure implemented as a min-heap, used for towers selecting its

target, has been described in section 5.3.2

Interface-oriented design methods has been used to make the system flexible and extendable, with

contracts specified for all interfaces used in the system, as seen in section 5.2

The OSGi component framework has been chosen due to its dependency injection feature and ability to

load and unload components during runtime, which is possible for the Player, Enemy and Projectile

components, see section 5.1. This makes the system easy maintainable for further development.

All functional must-have requirements concerning the gameplay described in section 2.1, have been

implemented and the game is working as intended.

Automatic tests have been created for all must-have requirements, which all passes, however most tests

are testing “happy day” scenario and more tests including boundary cases should be added.

Future work on the game could be implementing the extra features mentioned in the Functional

requirements section 3.2, which are prioritized as should- and could-haves, e.g., create maps

dynamically or make enemies able to attack the player and the towers.

Page 76 of 80

10. Bibliography

[1] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Pearson, 2010.

[2] J. C. Américo, W. Rudametkin and D. Donsez, “Managing the dynamism of the OGSi Service Platform

in Real-Time Java Applications,” Proceedings of the ACM Symposium on Applied Computing, March

2012.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to Algorithms, Third Edition,

MIT Press, 2009.

[4] J. Johnson, “FlatRedBBall: Circle Collision,” FlatRedBall, 2016. [Online]. Available:

https://flatredball.com/documentation/tutorials/math/circle-collision/. [Accessed 18 March

2022].

[5] LibGDX, “Spritebatch, Textureregions, and Sprites,” LibGDX, 9 March 2022. [Online]. Available:

https://libgdx.com/wiki/graphics/2d/spritebatch-textureregions-and-sprites. [Accessed 14

March 2022].

[6] libGDX, “Event handling,” libGDX, 22 May 2022. [Online]. Available:

https://libgdx.com/wiki/input/event-handling. [Accessed 24 May 2022].

[7] libGDX, “The life cycle,” libGDX, 22 May 2022. [Online]. Available:

https://libgdx.com/wiki/app/the-life-cycle. [Accessed 24 May 2022].

[8] libGDX, “The application framework,” libGDX, 5 May 2202. [Online]. Available:

https://libgdx.com/wiki/app/the-application-framework. [Accessed 24 May 2022].

Page 77 of 80

Appendix A IMap interface specification
Table 29: full interface contract for IMap

IF6: IMap

Operation getTiledMap()

Description used to get the TiledMap instance

Parameters -

Preconditions -

Postconditions returns a TiledMap or null

Operation setTiledMap(Tiledmap tiledMap)

Description

sets the tiledmap, which the component class

will use, and calculates the path from start to

end tile

Parameters
tiledMap: a map object from the libgdx

framework

Preconditions -

Postconditions the map used in the component is set

Operation getTileType(int x, int y)

Description
returns tile property based on map

coordinates

Parameters x,y: map coordinates

Preconditions a tiled map exists

Postconditions the tile property has been returned

Operation getTileTypeByCoor(int x, int y)

Description returns tile property based on cell coordinates

Parameters x,y: cell coordinates on map

Preconditions a tiled map exists

Postconditions the tile property has been returned

Operation tileCoorToMapCoor(float x, float y)

Description Converts tile coordinates to map coordinates

Parameters x, y: tile coordinates

Preconditions a tiled map exists

Postconditions map coordinates have been returned

Operation getStartTileCoor()

Page 78 of 80

Description Finds coordinates of the start tile of path

Parameters -

Preconditions the map must contain a path

Postconditions
the cell coordinates of the start tile have been

returned

Operation getEndTileCoor()

Description Finds coordinates of the end tile of path

Parameters

Preconditions the map must contain a path

Postconditions
the cell coordinates of the end tile has been

returned

Operation getTilesOfType(String property)

Description Finds tiles with a given property

Parameters
property: a string containing the wanted

property

Preconditions A map must exist

Postconditions returns a list of tiles with the given property

Operation getLayers()

Description Used to get the layers of the TiledMap

Parameters -

Preconditions a Tiled ap must have been set

Postconditions the layers of the TiledMap have been returned

Operation getPath()

Description
Returns the path through the map from start

tile to end tile

Parameters -

Preconditions
a Tiledmap including a path must have been

created

Postconditions
Returns an array containing the coordinates

the path

Operation changeTileType(int x, int y, String tileType)

Description
Used to change the tileType at a specific cell

coordinate

Page 79 of 80

Parameters
x,y: cell coordinates

tileType: the tile property

Preconditions a TileMap must exist

Postconditions A tile has changed it’s tileType

Operation getTileSize()

Description Used to get the pixelsize of individual tiles

Parameters -

Preconditions a TileMap must exist

Postconditions Returns the size of tiles in the map

Operation mapCoorToTileCoor(float x, float y)

Description Converts map coordinates to tile coordinates

Parameters x, y: map coordinates

Preconditions a tiled map exists

Postconditions tile coordinates have been returned

Operation getMapHeight()

Description returns the height of the map in pixels

Parameters -

Preconditions a tiled map exists

Postconditions the height has been returned

Operation getMapWidth()

Description returns the width of the map in pixels

Parameters -

Preconditions a tiled map exists

Postconditions the width has been returned

Operation getTileCenter(Point point)

Description
calculates the centre of a tile in map

coordinates

Parameters point: contains cell coordinates of a Tile

Preconditions a TiledMap must exist

Postconditions
returns map coordinates for the centre of the

tile

Operation isInsideMap(float x, float y)

Page 80 of 80

Description
checks if a given point is inside or outside the

map

Parameters x,y: coordinates of point to verify

Preconditions a TiledMap must exist

Postconditions
returns “true” if point is inside map otherwise

“false”

