
Bachelor Project

Replacement of a PAAS Backend

with a Custom Real-time Solution

Author

Troels Kaldau

Project Supervisor

Kamrul Islam Shahin

Liaison

Daniel Holst

Product Owner

MyEpi Aps

Examination number: 497065 June 2023

CONTENTS

I Abstract 3

II Introduction 4

III Method 5
III-A System Analysis and Design 5

III-A1 Elicitation 5
III-A2 Verification 5
III-A3 Responsibility Analysis . . . 5
III-A4 Prioritisation 5
III-A5 Use-case Description 5
III-A6 Activity Diagrams 5
III-A7 Sequence Diagrams 6
III-A8 Class Diagrams 6
III-A9 Component Diagrams 6
III-A10 Design Decisions 6

III-B Implementation 6
III-B1 Implementation Division . . 6
III-B2 Documentation Methods . . 6
III-B3 Task Selection 6
III-B4 Unit Testing 6
III-B5 Integration Testing 6
III-B6 Performance Testing 7

IV System Analysis and Design 8
IV-A Requirements Elicitation 8

IV-A1 Functional Requirements . . 8
IV-A2 Non-functional Requirements 8

IV-B Responsibility Analysis 8
IV-B1 Authentication 8
IV-B2 Authorisation 9
IV-B3 Stream Management 9
IV-B4 Code Generation 10
IV-B5 Contact Information Validation 11
IV-B6 Contact Alerts 11
IV-B7 Notification Management . . 11

IV-C Prioritisation 11
IV-D Use-case Analysis 11

IV-D1 Method 11
IV-D2 Results 12

IV-E Class Analysis 12
IV-F Component Analysis 12
IV-G Design Decisions 12

IV-G1 Tech Stack 12
IV-G2 Service Distribution 13
IV-G3 Stream State Management . 13

V Implementation 19
V-A Process 19

V-A1 Sprint 1 19
V-A2 Sprint 2 19
V-A3 Sprint 3 19
V-A4 Sprint 4 19
V-A5 Sprint 5 20

V-B Unit Testing 20

V-C Integration Testing 21
V-D Performance Testing 21
V-E End Product 23

V-E1 Service Endpoint Overview . 23
V-E2 Code Structure Overview . . 24
V-E3 gRPC Code Generation . . . 24
V-E4 gRPC Object Separation . . 24
V-E5 Endpoint Context Documen-

tation 24
V-E6 Input Validation System . . . 25
V-E7 Mongo Stream Management 25

VI Conclusion 27
VI-A Conclusion 27
VI-B Discussion and Perspective 27

References 29

Appendix A: Requirements Tables 30

Appendix B: Use-case Analysis Derived Concepts Table 31

Appendix C: Unit Tests Tables 32

Appendix D: Stakeholder Meetings 34

Appendix E: Concept Location 36

Appendix F: Design Artifacts 37

LIST OF FIGURES

1 Start authentication session endpoint sequence
diagram . 14

2 Authentication Class Diagram 15
3 Domain Class Diagram 16
4 Monolithic Component Diagram 17
5 Distributed Component Diagram 18
6 Unit test output 20
7 Integration test output 21
8 Performance test - 100 clients, pool size 100, no

modificiations 21
9 Performance test - single iteration, variable client

numbers . 22
10 Performance test - 100 clients, pool size 100, ping

modification . 22
11 Performance test - 100 clients, pool size 2000,

ping modificiation 22
12 Performance test - 200 clients, pool size 550, ping

modification . 22
13 Performance test - 200 clients, pool size 250, ping

modification . 23
14 Performance test - 500 clients, pool size 750, ping

modification . 23
15 Performance test - 500 clients, pool size 750, ping

modification, global stream modification 23

I. ABSTRACT

Firebase is a popular server-less solution for a wide range of software products, particularly aimed at mobile applications. It
offers a simple setup and covers a wide range of responsibilities which would otherwise need to be developed from the ground
up, or covered by a range of other services, each with their own setup requirements.

While this solution offers significant advantages, using Firebase limits the developers flexibility and control of their service.
They are constrained to the features which Firebase offers and combining these with custom solutions can cause issues based
on increased complexity and incompatibility. This project has sought to design a replacement service which covers an array of
the responsibilities otherwise covered by Firebase. The project takes basis in the concrete case of MyEpi, a company seeking
to replace their implementation of Firebase. Therefore, the responsibilities in focus are derived from the current use of Firebase
within the software product offered by MyEpi.

To reach a design, the responsibilities which the replacement service needed to cover were first elicited through source code
of the MyEpi product in question as well as through stakeholder meetings. They were thereafter analysed for the obtainable
value from deriving new solutions compared to known solutions within the organisation. The responsibilities chosen as the
focus of this project were stream Management, Code Generation, and Authentication. Concrete functional requirements were
elicited and prioritised to demonstrate the design for covering the selected responsibilities. Use cases were extrapolated from the
requirements and class diagrams as well as component diagrams were derived from the use cases. The Design was implemented
and tested using both unit tests and integration tests to validate the functionality. Thereafter a performance test was conducted
to test and improve the average and maximum response time of the service.

The outcome of the process was an implemented service which demonstrates the coverage of the selected responsibilities. It
has proved the viability of the selected technologies, hereunder the framework of NestJS, selected transport protocol of gRPC,
and the state management method of MongoDB ChangeStream’s. The most noticeable results have been the limitations of the
MongoDB ChangeStream’s. Performance implications have been linked to both excessive MongoDB connections as well as
the method in which the used MongoDB driver handles connection limitations. The final service showed an average response
time of 102.5 milliseconds for a single service servicing 500 subscribed clients, each making 1 change request per second and
expecting a stream event in return.

The final findings of this project has primarily shown the promise of gRPC. It has proven it to be an efficient transport protocol,
both in implementation and performance.

II. INTRODUCTION

This section is dedicated to clarifying the scope and purpose
of the project described in this report. It provides a description
of the case, the problems that should be solved, the intended
focus and by whom they are defined, as well as the project
formulation and project limitations.

This project is based on a business case offered by the
company MyEpi Aps and defined by the affiliate company
LittleGiants Aps. LittleGiants is responsible for the product
development for MyEpi. MyEpi was founded in February 2021
by Jakob Junker. The company is a lean Start-up working
closely with its affiliate company LittleGiants, within the same
offices. Its mission statement is defined as:

“Ensure safety and security for families greatly affected by
epilepsy” [1]

The company has sought to do this through a software ap-
plication for the Apple Smartwatch series. The product uses
information available from the smartwatch sensors to detect
epileptic seizures through an algorithm commissioned from a
professor at The University of Southern Denmark.

LittleGiants was founded in March 2018 by the current owners
Daniel Holst, Camilla Holst, Carsten Holt, and Steffen Aa-
gaard. The company is primarily a cross platform application
consultancy agency; however, they have offered a wide range
of services in an attempt to find their ideal market. Beyond
experimenting with different services, they have experimented
with many different technologies to find the most suitable tech
stack. They have chosen Flutter as their preferred front-end
framework. The back-end solution has been more unstable,
with different frameworks, languages, transfer protocols, etc.,
considered, tested, and used. The current preferred solution
is NestJS as framework, Typescript as language, MongoDB
as database, and OpenAPI for code generation. The exper-
imentation has slowed down, however, the company is still
considering other solutions.

Currently, the MyEpi software application is server-less and
based on Firebase. However, interest in expanding the software
service beyond the current product has proven the server-less
solution too inflexible. Therefore, the company would like to
replace this solution with a back-end service, of which they
can have more control. However, it is important that the current
service does not lose functionality. Therefore, the new solution
must offer real-time data in the same form as Firebase, to avoid
the need for new state maintenance solutions implemented in
the front-end. As Firebase has its own client library for front-
end implementation, the new solution cannot offer full com-
patibility with the current front-end implementation. However,
to increase the ease of implementation, the back-end should
be developed as close to the current Firebase setup as possible
in terms of offered endpoints and data structuring. Alternative
implementations can be considered when sufficiently justified,
but the implications must be weight against how much value
it brings to the table.

The focus of this project is to design a solution for the project,
and so implementing any concrete endpoints is not the focus
of the project. The design should be clearly defined, defended,
and verified to fulfil the requirements and needs defined in the
case. The design includes the technologies used, architectural
templates for domain implementation, as well as concrete
architectural pattern implementations for selected non-domain
specific services.

The project is written for MyEpi and is responsible only to
this company. However, due to the affiliation between MyEpi
and LittleGiants, it has been requested that the project take
the interests of both companies into consideration.

Problem Statement:

“The product owner wants more control of its back-end
service to avoid restrictions for future product development,

but does not want to lose the functionality that they are
currently utilising”

4

III. METHOD

This section is dedicated to clarifying the method used for ful-
filling the project formulation. It outlines the use of processes
and tools in partially chronological order. It is a guideline
for the method used, however, as software engineering is a
fluid and iterative process, deviations from the method are
inevitable.

A. System Analysis and Design

The first step is to define the system which is to be developed.
This includes identifying the requirements of the system,
prioritising set requirements, and converting the requirements
into an implementable design.

1) Elicitation
First, the current system was analysed for use of Firebase
functionality. This was done with a dependency analysis.
Files containing dependencies of Firebase services were first
identified and listed throughout the project. Thereafter, each
file was analysed to identify the functionality provided by it,
and the way in which Firebase played into the functionality.
This resulted in a list of concrete functionalities provided by
Firebase, as well as an overview of the dependency distribu-
tion. The result was formed in a list of functional requirements
reflecting the functionality that would need to be provided
to replicate the Firebase service as it is currently used. To
ensure compatibility between prospects of the company and
the developed solution, documentation of future functional
requirements of the user interface was analysed. Each require-
ment was evaluated for its dependency on back-end function-
ality. This resulted in a revised requirement specification with
support for planed functionality.

2) Verification
To verify the captured requirements of the project a meeting
was scheduled with the project manager. Before the meeting,
an agenda was written as well as a list of questions for
clarification of written and intended functionality of the anal-
ysed system. The meeting started with an explanation of the
elicited requirements to establish a common ground, followed
by discussion of the correctness and relevance of these. The
meeting resulted in a clear list of requirements, with added
sources for requirements elicitation.

3) Responsibility Analysis
Once the list of requirements was final, a responsibility anal-
ysis was carried out. This sought to identify central areas of
responsibility from the requirements to investigate their risk of
complications in regards to the project. The method included
five steps:

• Identifying the responsibility
• Identifying the desired trades of a future solution
• Identifying the systems current solution
• Identifying known solutions within the organisation
• Identifying central design decisions of the solution.

This method revealed the distance between the desired so-
lution, the known solutions, and the currently used solution.
It revealed the value aimed to be gained by the replacement
service. The output revealed the requirements with the most
value and with the least certain solutions. High value solutions
would be prioritised in the requirement selection. uncertain
solutions would be important to solve early in the process,
as their outcome could have a great impact on the further
proceedings of the project.

4) Prioritisation
Following the responsibility analysis, a new meeting was setup
with the project manager. This had the purpose of discussing
the results of the analysis to agree upon the most relevant
requirements. Beyond the value proposed by the analysis, the
focus was to select diverse requirements. The intend was to
cover the service as broadly as possible, and thereby create
a structure which could be extrapolated to the rest of the
requirements. This would ease and accelerate the complete
service implementation as the remaining functionality would
have a similar structure to the already implemented function-
ality. It would also reduce the risk of the project, as the main
architecture and technologies would already have been tested
and validated. Diverse requirements would therefor bring the
most value to the stakeholders. The final prioritisation was
documented with the MoSCoW principle. From the MoSCoW
prioritisation, all Must requirements were selected as well as
a selection of the Should requirements. The scope was kept
relatively small to ensure adequate time for completion.

5) Use-case Description
Based on the functional requirements, the use cases were
described with four fields:

• Which requirements does it fulfil
• What is the intended outcome of the use case
• What are the intended steps for fulfilling the use case
• What are the potential error states that can arise, and how

should they be handled

This provided a frame for fulfilling the intended functionality.

6) Activity Diagrams
Based on the requirement expansion, two activity diagrams
were formed. One showed separate flows modelling the most
important use cases, as well as examples of similar use cases.
This gave a visual and easily digestible overview of the
use cases. The second diagram showed a single flow which
incorporated the use cases involved in starting, maintaining,
and ending an authentication session. This was identified as the
most valuable and intrinsic flow of the service. The diagram
was therefore made to give an understandable view of it. It
was supplemented by a state machine showing the flow in an
even simpler diagram.

5

7) Sequence Diagrams
To provide a more concrete and in-depth overview of the
process flow for the use cases, a sequence diagram was made
for each one. This showed the flow between the user, the
system, and the persistence method of the system. From this,
four implementable concepts could be identified:

• Data objects – encapsulations of semantically or func-
tionally coherent data

• Internal processes – processes either creating or modify-
ing data

• Persistence processes – communication with the persis-
tence method

• Errors – potential error states which the user would be
informed of

By identifying these concepts from every sequence diagram,
a union could be made for each area of responsibility. This
removed repeated concepts from a single area of responsibility.
Afterwards, an intersection of the concepts could be made
across the areas of responsibility. This gave a list of common
concepts which were reusable across areas of responsibility.

8) Class Diagrams
The elicited concepts from the sequence diagrams gave the
fundamental building blocks for creating class diagrams. The
concepts provided both data classes and interfaces, and the
sequence diagrams documented the dependencies between the
classes. The class diagrams provided the general structure for
the code implementation

9) Component Diagrams
From the class diagrams, two component diagrams could be
derived. This demonstrated the organisation of modules in the
system as well as the provided and required interfaces and the
methods for connecting internal and external services.

10) Design Decisions
From the responsibility analysis, a range of design decisions
could be made. This included the general tech-stack, the
service distribution, and the method for stream management.
These were all key areas of concern and creates a frame for
the implementation of the project.

B. Implementation

Once the system has been designed it must be implemented
diligently to ensure that the final product follows the system
design. For this, a work process and fitting management
tools must be selected. This should ensure that the design is
implemented systematically and efficiently in small iterations
with sufficient verification.

1) Implementation Division
For the implementational process an iterative process was
chosen with a sprint duration of one week. This gave ap-
proximately two and a half workdays per sprint. For each
sprint a section was written including a purpose and a list of

objectives. The objectives reflected the requirements it would
fulfil, but also included technical challenges that would need
to be overcome. After each sprint, a result section was written
documenting what was accomplished, what challenges were
meet, and what needed to be kept in mind or finished in the
next sprint.

2) Documentation Methods
Beyond the written sprint sections, the code progress was
documented through GitHub. For each sprint a branch was
made based on the master branch. The sprint was implemented
here, and changes committed with descriptive messages. At
the end of a sprint a merge request was made to the master
branch with a more concise description of what changes had
been made. After the merge with master a release version
was produced with a description of the state of the release.
This made it easier to identify the major feature changes made
throughout the project.

3) Task Selection
The tasks for the sprint scope were prioritised based on the
perceived difficulty of the implementation, the understanding
of the implementation, and the effect that the used implementa-
tion would have on other tasks. The goal was to avoid redoing
work by completing the tasks with the biggest impact on the
project structure first. As such, the first sprint was a prototype
with the single purpose of validating the compatibility of the
tech-stack and the basic features it needed to provide. Once
this was done, there was a basic structure for the core feature
types which could be copied for the implementation of the
functional requirements.

4) Unit Testing
The purpose of the project was not just to make a functional
service, but to create an architecture upon which the final ser-
vice, and potentially other services, could be based. Therefore,
validating the individual components was of high priority. The
functionality had been divided into 3 main layers: endpoints,
business logic, and persistence. For each module, a test file was
made for the business logic and persistence layers. Each public
function was tested with the possible states and the returning
values or errors were validated. This ensured a 100% test
coverage of the implemented logic. Due to the business logic
layers use of the persistence layer the persistence layer was
tested twice. The reason for this was to quickly identify the
root of a given issue. The deeper nested an error occurs from
the point of discovery, the harder it is to detect the source. With
the separation of business logic and persistence, there was also
the opportunity of switching the persistence method. For this,
a dedicated persistence test suit would make the switch easier
to validate.

5) Integration Testing
To test the endpoints an integration test suite was setup. This
included the creation of a client service which could call
the endpoints. As the final service would be used by an

6

application written in dart, dart was chosen as the language
for the client, to ensure that successful communication could
not be contributed to the NestJS framework. The integration
test focused on the possible input values and return types. It
did not seek to test every possible state, as this was covered
in the unit tests. The purpose was not to test the service logic,
but to ensure correct data transfer between client and service.

6) Performance Testing
To test the performance of the service multiple performance
tests were run. The performance tests were based on the same
test client as the integration tests. For each test, a number of
clients were created, each in their own process implemented
with the concept of isolates [2]. Each client would subscribe to
a stream exposed by the service. Thereafter they would emit 10
requests for change with a random frequency of between 500
and 1500 milliseconds. Each message would trigger a response
through the subscribed stream. To test the performance of
the service, each client would measure the delay between
an emitted request for change and a corresponding received
stream event. Tests were conducted with a different number
of clients and changes to the parameters of the service to
identify performance inhibitors. Some tests were run several
times on the same service instance to test for accumulating
delays. Other tests were run a single time were after the service
instance was restarted. After an inhibitor had been identified,
it was attempted solved and the test which identified it was run
again. Successful solutions to identified inhibitors were kept
for subsequent tests. Thereby the process iteratively zeroed in
on the best performing solution.

7

IV. SYSTEM ANALYSIS AND DESIGN

This section is dedicated to documenting the process used for
identifying and prioritising requirements as well as convert-
ing them to implementable designs for the implementations
process. It outlines the results of each process as well as the
thought process and information upon which it was based.

A. Requirements Elicitation

First, the requirements must be elicited from available docu-
mentation as well as stakeholders. The elicited requirements
contain all the currently available expectations of the finished
product, which goes beyond what will be implemented in this
project.

1) Functional Requirements
As mentioned in the Method, the functional requirements
were elicited through a combination of concept location,
dependency analysis, stakeholder meetings, and front-end re-
quirement analysis. The requirements have been iteratively
elicited and represent the full functionality of the final product.
These can be seen in Appendix A.

2) Non-functional Requirements
The nonfunctional requirements were elicited solely through
stakeholder meetings, and so, they reflect the stakeholders’
expectations of the product characteristics. An overview of
the selected requirements can be seen in Appendix A.

In terms of scalability, the service will be run in a containerised
environment. The service needs to be stateless so that it can
be scaled horizontally. Due to the containerised hosting, the
internal scalability of the service is of little concern. In terms
of availability, there has not been set a concrete expectation
of up-time. This is due to the difficulty of testing this without
having a service in production.

In terms of performance, there has been set an expected
number of active users per service instance of 500. This is
based on the following details: The expected number of active
users in the short-term future of the service is 1000. An
active user is expected to have a maximum activity level of 1
modification per second. There is expected to be a minimum
of four service instances. A state of two killed services is
considered an undesired but possible state. Two services must
therefore be able to handle the currently expected load. One
service must therefore be able to handle 500 active users.

In terms of modifiability, there will be a high focus on code
separation due to high experimentation within the organisation.
Technologies should be kept separate to ensure easy replace-
ment.

In terms of testability the highest risk in the system is a service
killing endpoint state, as this could sequentially and contin-
uously shut down services faster than they can be created,
rendering the system unavailable. This is also known as a
cascading failure. To avoid this, there should be a complete

test coverage of the endpoint states. The total expected internal
test coverage is at 95%.

In terms of security, it is expected that common, modern, and
defended standards are used for security measures. Bcrypt is
expected for password encryption.

B. Responsibility Analysis

As described in the introduction, the aim of this project is
not implementation of functional requirements but design and
verification of the architecture and tech stack meant to support
the system. The prioritisation of the requirements is therefore
tied to the analysis and design as it is here the technical
challenges will be revealed. This section is meant to uncover
these technical challenges. The prioritisation will be based on
the most valuable and risk prone requirements found in the
analysis and design of the system. To compare the current
solutions with known solutions within the organisation, a
project named MealBuilder has been selected as a reference
project.

1) Authentication
The authentication solution must allow for login with email
and password. The connection must be encrypted with asym-
metric encryption to ensure security. It must allow the au-
thentication to last between sessions. It must ensure that
the open authentication cannot be violated by other actors.
Authentication is also a domain-less responsibility shared by
many applications. It is therefore an obvious responsibility
to extract into a reusable component. This will maximise the
value of the project to the stakeholders at LittleGiants.

Currently, the authentication is handled solely by Firebase
through FirebaseAuth [3]. FirebaseAuth uses JWT tokens to
manage users. The Flutter FirebaseAuth package abstracts
the handling of JWT tokens from the developer. The current
solution only incorporates sign-in with email and password,
but FirebaseAuth offers both OAuth2.0, supporting a long
list of integrated authentication providers, as well as 2-factor
authentication.

Within the MealBuilder back-end authentication has been im-
plemented as a separate controller in the NestJS application. It
handles the creation of users, authentication of users, creation
of authentication sessions, and tear-down of authentication
sessions. The created User object only contains authentication
data and a reference ID. The id is later associated with the
creation of a user profile, containing domain specific data.
The implemented authentication strategy is a two-factor au-
thentication using SMS verification codes. The Authentication
session is managed with the use of two tokens – an access
token and a refresh token. The access token is a signed token
containing the user’s id and phone number. The access token is
generated using the JWTService which produces a JWT token.
The refresh token is a unique random string of 16 bytes in hex
format. The token is stored in the database with the user’s id
and an expiration date set to six months. The access token is

8

used to validate the user with the domain endpoints but it is
short lived. To re-validate, the user can send the refresh token
and obtain a new access token. This reduces the exposure time
of the access tokens and reduces the exposure frequency of the
refresh token. This authentication method is tightly coupled
with the overall authentication controller and replacing the
method or adding additional authentication methods is not as
easy as it could be. There is a distinct separation of concerns
between the handling of authentication and handling of an
authentication session. Separating the concerns could simplify
the implementation and increase modifiability.

In summary, for handling responsibilities tied to authentica-
tion, the service must maintain and have access to authentica-
tion information. This is compared to the information sent by
the user. If the user is authenticated, a session is created. The
user must receive a reference to the session (session token),
which can be given to other services for validation. Other
services must therefore have a way of validating the given
session token. They must also be able to get a unique user
identifier from the session token to maintain the user’s state.

2) Authorisation
The highest responsibility of authorisation is ensuring confi-
dentiality and integrity of the users’ data. The authorisation
should rely completely on the back-end system and should
treat the front-end as an untrusted entity. It should be possible
to define authorisation guards at multiple levels to avoid
scattering general guards unnecessarily. The guards should be
highly visible and manageable to ensure that developers add
the correct guards and avoid over exposing resources.

Currently, the front-end system uses unguarded resources.
This means, the authorisation is handled in the front-end.
This is done primarily by getting the current user id from
the FirebaseAuth library and using this for queries. This
ensures that the data collected belongs to the authenticated
user. However, handling authorisation on the client device is
generally not safe, as it exposes the authorisation logic to
potentially malicious users.

Within the MealBuilder back-end authorisation has been im-
plemented with the NestJS UseGuard Library. This allows
middle-ware injection on endpoints which is run before the
endpoint function. The middle-ware accepts the endpoint
context containing the payload and parameters of the request.
It can then carry out any validation on the request before
allowing the endpoint function to execute or it can throw an
error if the validation fails. However, this solution is only
effective for REST-endpoints and WebSocket connection re-
quest, but not for active WebSocket communication. Currently
the active WebSocket authorisation is placed in domain entity
specific functions, wherein it is determined which channels the
data object should be sent to. This handling is significantly
different from the REST-endpoint authorisation strategy and
is less efficient at conveying the intent of authorisation logic.

The tight coupling to the domain discourages the generalisa-

tion of an authorisation service. However, the logic can be
abstracted into modules or packages to keep the implementa-
tion as clean and manageable as possible. The implementation
should ideally be short readable statements clearly defining
the authorisation requirements of a particular resource in
the system. There should be a consistent tactic for handling
authorisation, as consistency makes it easier to verify endpoint
compliance with trans-trust-boundary and general permission
documentation.

3) Stream Management
The objective is to make domain state management obsolete
in the front-end application, and it is therefore paramount
that the clients can rely upon the back-end to provide the
correct current state of the system. Beyond this, the overhead
of implementing streams in the service must also be as small
as possible. Ideally, the subscription endpoints should be code
generated. The needed state maintenance in the front-end
should also be minimised and made simple to avoid state
inconsistency due to front-end misconfiguration.

Currently, streams are managed by Firebase which abstracts
the state management from the front-end developers. Firebase
downloads and maintains data which the user is subscribed to
and returns data from the in-memory stores. It also maintains
a queue of requests when the client is offline [4].

Within the MealBuilder back-end the real-time data has been
implemented with the use of WebSocket services. There is one
service for each domain entity. The services are based on the
NestJS library GateWay and consist of 2 primary functions:
handleEvent and emit. The handleEvent function is informed
of attempted client subscriptions to the domain entity and
is given a reference to the socket. The socket can then be
subscribed to additional sub-channels based on the client type
and authorisations.

The emit function handles the emission of messages to the
subscription channels of the associated domain entity. The
function emits to the main channel and sub-channel based
on available information on the given data object. Within the
function, guards are written to determine who should receive
what.

The emit function of a domain object is called within any
function which manipulates the domain object. This, however,
places the responsibility of ensuring correct emission of data
from each endpoint on the developer. If they don’t, the clients
won’t be informed of the change and will have an invalid
state. Ideally, the stream of data should be directly and
implicitly connected to the actual state of the back-end data
storage solution. This would simplify the responsibility of the
developers and reduce the possibility of errors.

Streamed data can be provided in multiple ways, with varying
need for maintenance. Data can be directly updated by trans-
ferring the results of the entire subscribed query when state
has changed. This minimises the need for maintenance by the

9

client but increases the data usage. Alternatively, only changed
entities can be transferred, which requires the client to insert
the updated entity. The most efficient method is transferring
the changes made, also called the ”delta”, rather than the full
object. This requires the client to perform the changes on the
stored entities, and thereby replicate the changes made to state,
rather than the state itself. Beyond this, a minimal stream
implementation would be to simply inform the front-end of
a changed resource and leave it up to the front-end to update
this resource through requests. This would ensure real time
state management with a minimal back-end implementation;
however, it would be slower and more data intensive.

A client can connect to multiple WebSocket’s, however, each
WebSocket has an overhead. It must therefore be decided
whether to use a single WebSocket with more complex
emission handling or individual sockets each with a singular
purpose. The former will increase performance; however, the
latter will decrease complexity and simplify authorisation.

The solution should be based on streams. A secure guard
system must be implemented to safeguard the stream channels.
The streams should ideally be directly connected to the data
state, instead of being handled as a step in the state manip-
ulation process to avoid faults in the implementation. A data
transfer strategy must be chosen to balance the simplicity of
client state management with data usage.

4) Code Generation
The desired system is an API back-end to which clients can
connect over a network connection. Due to the connection
type, there is not a predetermined communications protocol,
beyond the basics of http restrictions. Therefore, a communica-
tions structure must be created and documented to ensure com-
pliance between client and server. This compliance requires 3-
way interpretation, as it needs to be written both for the server
API, the client connection, and the documentation. This is the
grounds for slow unnecessary implementational work which
allows for many errors due to communication inconsistencies.
To solve this issue, the strategy of code generation is desired.
This allows both client and server communication to be gener-
ated based on a common API documentation scheme. The re-
sponsibility is to ensure complete communication compliance
while minimising manual code duplication. Every back-end
endpoint should be clearly defined and documented to give
a clean overview of the available functionality and possible
error states that may occur. Interfaces and shared data entities
between client and server should ideally only be defined once,
and from there be automatically generated anywhere else it is
needed. There should ideally only be one method of definition
for both REST-endpoints and WebSocket endpoints.

The current Firebase solution is completely implemented in the
front-end. However, it does have cloud functions defined which
must be compliant with the client functions which calls them.
This consistency is manually maintained by the developers.

Within the MealBuilder back-end, decorators are appended

to controllers and endpoints. These provide the specifica-
tion of the service. From these decorators a package called
”nestjs/swagger” [5] can generate an OpenAPI specifications
document. This document can be read by a multitude of
other services, which can present it for easy writing and
generate front-end and back-end code from it. This allows
for generating the front-end client automatically, avoiding im-
plementation mistakes. The OpenAPI protocol [6] Allows for
defining endpoints, attribute types, attribute ranges, endpoint
errors, as well as other identifiers. The point is to convey the
correct usage of a service in as simple a format as possible.
The format is kept both human and machine readable to be
as versatile as possible. The OpenAPI protocol is not yet
compatible with streaming endpoints and is only meant for
restful endpoints. As streaming endpoints is a requirement
for this project another documentation must be found for
the streaming endpoints. As a single documentation style
is preferred for the project, it should be examined whether
another documentation style, supporting stream endpoints, can
also be used for code generation on par with the supported
choices for OpenAPI specifications.

AsyncAPI [7] is a protocol which builds on the principles of
OpenAPI to add support for asynchronous endpoints. It is sup-
ported by swagger code-gen which supports code generation
for a long line of languages. However, AsyncAPI is designed
specifically for Asynchronous endpoints and does not offer
support for rest endpoints. This means, all communication,
including CRUD requests, would have to be implemented in
Asynchronous endpoints, or a combination of AsyncAPI and
OpenAPI would have to be used. As Swagger supports both,
the same code generation tool could be used for a combination
of the documentation protocols.

gRPC is a WebSocket based transfer protocol designed by
google, primarily to support fast communication between
micro-services. It was not designed for front-end communi-
cation; however, it is one of the fastest protocols available. It
relies on transferring binary encoded objects rather than text
encoded objects such as JSON. This significantly reduces the
size of messages and thereby increases the transfer speed. It
only uses a single stream connection created in the beginning
of a client correspondence, which reduces the connection
overhead. It also has code-generation support for a long line
of languages. Beyond this, there is the possibility for adding
http support with JSON payload to the gRPC endpoints, which
would allow non-gRPC clients to have access to the service
[8]. These http endpoints could be described in an OpenAPI
document to provide documentation for third party services
[9].

The gRPC protocol seems to offer better performance and
more flexibility than a combination of AsyncAPI and Swagger.
However, it is also much further from the method that is
currently used by LittleGiants. It must therefore be decided
whether the benefits of gRPC warrants the risk of implement-
ing a new technology. Should AsyncAPI be chosen, it must be

10

decided whether the service will be asynchronous only or if it
will mix AsyncAPI with OpenAPI, which could also present
complications.

5) Contact Information Validation
It is currently a requirement that the contact information of
both users and their contacts are validated. This entails veri-
fying that the owner of the contact information has access to
the communication channel bound to the contact information,
and that they accept the systems use of them.

It is determined that the current solutions within LittleGiants is
sufficiently modular to be implemented with little risk of com-
plications due to a new project structure. The implementation
is therefore of little interest to the objective of this project and
is not explored further

6) Contact Alerts
The system must have a way of alerting the contacts of a user
when the user is experiencing a seizure.

The current solution fits the desired trades and is imple-
mentable in a long line of languages. It is not expected to
provide any complications with a new project structure and is
therefore not explored further.

7) Notification Management
The system must have a way of sending notifications to the
client, both when the client application is active and when
it is inactive. The system must be able to send information
necessary for forming notifications on both Android and iOS
which the client application supports.

It has been requested by the stakeholders that the current
solution for notification management is maintained. This has
been done in previous projects withing LittleGiants and is not
expected to give any complications in a new project structure.
It is therefore not implemented or explored further in this
project.

C. Prioritisation

After the responsibility analysis it has been concluded that
the most valuable and risk prone responsibilities of the new
service is going to be Stream management, Code Generation,
and Authentication prioritised in that order. The global re-
quirements have been prioritised by how they implement these
responsibilities as can be seen in Appendix A.

The authentication requirements have been included to demon-
strate the responsibility area of Authentication Management.
Profiles and Seizures have been chosen to demonstrate the
responsibilities of Code Generation and Stream management.
For the profile, creation and updating of the profile has been
chosen as must requirements, as they allow state changes
which will trigger the stream management. The same goes
for Seizures, where creation and deletion has been chosen as
must requirements. For the seizure stream, filtering on seizure
attributes has also been included to demonstrate this capability.

D. Use-case Analysis

The use case analysis has the purpose of mapping the external
system requirements to internal system requirements and con-
cepts. This moves the focus from what the system needs to
provide for the user to how the system intends to provide this
functionality. The result is a list of abstract concepts which a
system design can be based upon.

1) Method
The use case analysis builds upon the functional requirements
identified and prioritised in the Requirements Analysis section.
Select functional requirements are mapped to use cases. The
system communicates with the user through endpoints and
every use case is therefore an API endpoint.

The objective of the analysis is to identify the needed sequence
of steps to fulfil the goal of the use case, as well as error
states which can occur from misuse of the use case or from
data corruption. This is collected in a use case specification
table defining both the requirements that the use case fulfils,
the goal of the use case, the sequence of steps to reach the
goal, and the possible error states.

From the steps and error states an abstract model of the
system can be created. This is used to identify system actions
needed to fulfil the use case specification. The abstract model
is built through sequence diagrams. The sequence diagrams
are external, meaning, they model the system as a single unit,
as the system components have yet to be identified. The model
is therefore divided into the 3 known components - The user
connection, the system, and the method of persistence called
the “database”.

From the sequence diagrams four primary concepts can be
identified:

• Internal processes of the system which either validates or
creates data

• External database processes which either modifies or
collects data from the database

• Error state messages sent to the user
• Abstract data models

These concepts are central to the development of the system
structure. They each represent an Area of Responsibility (AoR)
which must be fulfilled to provide the intended functionality.
As each concept carry different responsibilities, they must be
logically divided in the architecture of the system. This ensures
easier implementation and maintainability.

Beyond concept identification of each use case, a union of the
identified concepts can be created for each AoR. This leaves
the entire list of abstract concepts for each AoR. From this
an intersection of the concepts for the entire system can be
made, which leaves a list of commonly used concepts which
can be shared between different AoR’s. The table of concepts
for each AoR as well as the execution sequence of each use
case is the primary output of this analysis.

11

2) Results
The process resulted in 13 sequence diagrams – four to
model the authentication endpoints, four to model the profile
endpoints, and five to model the seizure endpoints. From each
section of models a table of concepts was derived from the
diagrams.

Figure 1 shows the sequence diagram of the endpoint for
starting an authentication session. To identify concepts this
was analysed in the following way. Messages from the system
lifeline to the user lifeline was either “data objects” or “error
types”. Self-calling processes of the system lifeline were
“internal processes”. Calls from the system to the database
lifeline were “database calls”. Beyond this, data objects could
be identified from the return types and arguments of processes.

E. Class Analysis

The output of the Use case analysis provided the required ele-
ments for a high-level overview of the project implementation.
This was modelled with a Class diagram to ensure consistency
in the implementation. It provided a better overview of shared
resources, dependencies within the system, and the responsi-
bilities of different components.

Other structural views were disregarded due to the low com-
plexity of the system. Artefacts produced either need to feed
the further implementation of the developed prototype system
or be useful for later implementation of the full system. For
these purposes, the class structure view was deemed sufficient.

Due to the separation between the authentication endpoints
and the domain specific endpoints, they were modelled in their
own class diagrams. This also enforces the desired separation
between the AoR’s, as any dependencies between them would
warrant a complete reconfiguration of the modelled structure.

Further, the authentication responsibility was separated into
two AoR’s – Authentication and Authentication Sessions. This
resulted in 4 distinct AoR’s. Each AoR has the responsibility
of communication, validation, manipulation, and persistence of
its own data object. These responsibilities are divided into 3
classes, which is a controller class for communication with the
client, a service class for data manipulation, and a persistence
class for communication with the database. The validation is
distributed across all classes.

Figure 2 shows the authentication class diagram, which models
both the Authentication and Authentication Session AoR’s. It
shows one dependency from the AuthService to the AuthSes-
sionService (D1) and one interdependency on the AuthTokens
data model from the AuthService and AuthSessionService (D2).

The authentication controller has the need to create an au-
thentication session. This could be done by implementing
the persistence functionality in the AuthPersistenceService.
However, this would mean fragmenting the responsibility
for persistence of the AuthSession object. To avoid this, the
dependency D1 was introduced.

Figure 3 shows the domain class diagram which models the
Profile and Seizure AoR’s. It can be seen that there are only
interdependencies between the AoR’s but no direct dependen-
cies. The primary interdependency is on the JwtService, which
is used by the service classes of both AoR’s. This reflects the
shared internal processes shown in Appendix B

F. Component Analysis

The output of the class structure analysis provided the needed
information to create a component structure. This shows the
interface connections between modules within the system, as
well as actors outside of it.

Two distinct component diagrams have been made – one
showing a monolithic system and one showing a distributed
system. Due to the low interdependency of the system, multi-
ple configurations are possible. The monolithic system is the
easiest to implement, but the distributed system allows for
plugging the authentication module into other systems.

Figure 4 shows the monolithic system. It contains four mod-
ules, each exposing their own interface which is exposed out of
the system through a port. Each module also has a dependency
on the same interface exposed by the database, which is
outside the system boundary. The dependency between the
AuthModule and the AuthSessionModule which was defined in
the class structure analysis, is also modelled in the component
diagram. It can be seen as a direct dependency without any
mediaries.

Figure 5 shows the distributed system. It contains two systems,
each containing two modules. Like in Figure 4, each module
exposes an interface, and each module has a dependency on
an interface exposed by an external database. The dependency
between AuthModule and AuthSessionModule is here mediated
by exposing ports and negotiated by an internal interface.
This has an increased overhead, but the separation allows
easier swapping of AuthModule, and potentially multiple Au-
thModules which can be introduced to the system without
change of source code. The distributed system could be further
decorated. The two systems could have separate databases
to increase security. The exposed interfaces of the modules,
which are currently exposed on two different ports, could be
included in a load balancer to expose them over one port.

G. Design Decisions

This section clarifies the design decision which have been
made for this project. They rely heavily upon the information
gathered in the Responsibility Analysis as well as the questions
which was raised during this analysis.

1) Tech Stack
The database used for all the projects of LittleGiants is
MongoDB supported by Redis. MongoDB does not hinder any
of the proposed technologies or strategies and the use of it is
therefore not protested. Redis is not suspected to be utilised for
this project but will be available in the production environment
due to organisational convention within LittleGiants.

12

Based on the analysis and meetings with LittleGiants gRPC
has been chosen as the stream method, which also offers
code generation. It has been chosen as it is one of the
most performant transfer protocols available and offers code
generation for both streams and endpoints. It works over http
2.0, which makes it incompatible with web browsers, but
configurations are offered for it to work over standard http
1.1 calls with JSON serialised payloads [10].

The use of JWT is widespread. It is used both by the current
solution (Firebase) and within the most recent projects of
LittleGiants. It also minimises the needed communication
between the authentication management and domain services,
as each token contains the user’s authentication level. JWT
will be used for the access token and will be protected with a
refresh token.

The current preferred back-end framework at LittleGiants is
NestJS which is based on Typescript. This framework does
not seem to hinder any of the other chosen technologies and
no other framework offers crucial advantages over NestJS. It
is therefore chosen for consistency and reusability.

2) Service Distribution
Containerisation is a great method for increasing reusability
of services. It would be possible to separate the authentication
service into its own container. However, the current projects
at LittleGiants are relatively small projects. The overhead of
the container communication would most likely supersede
the gained reusability from containerising their systems. The
service will run in a container wherein support systems could
be included in their own containers, but the boilerplate code
will be kept in an isolated service within one container.
However, the authentication and domain code will be separated
as much as possible, and communication between them will
be managed and limit. This should make it easy to separate
the authentication code into its own service later.

3) Stream State Management
The chosen stream state management strategy is sending the
entire updated element along with the type of CRUD change
that has been performed. The client is therefore responsible
for carrying out the change on the existing data. If all changes
are performed, the client and back-end state will match.

13

Fig. 1: Start authentication session endpoint sequence diagram

14

Fig. 2: Authentication Class Diagram

15

Fig. 3: Domain Class Diagram

16

Fig. 4: Monolithic Component Diagram

17

Fig. 5: Distributed Component Diagram

18

V. IMPLEMENTATION

This section is dedicated to give a clear understanding of the
product which resulted from the documented design as well
as the development process behind it.

A. Process

This section gives an overview of the sprints which were
carried out during the main development phase. Each sprint
included the creation of a module, unit tests of set module,
and integration tests of set module. It did not, however, include
performance testing, which was carried out after the functional
verification of the entire project.

1) Sprint 1
Time period: 2023-03-06 till 2023-03-12 (Week 10)

The purpose of the sprint is to create an MVP prototype which
can document the fundamental aspects of the tech-stack. These
are the aspects which are necessary for the design to move
forward and is agnostic of the domain. It should demonstrate
the:

• Compatibility of gRPC and NestJS
• Compatibility of gRPC and Dart
• Code Generation within both NestJS and Dart
• Single call capabilities of gRPC
• Streaming capabilities of gRPC
• Streaming capabilities of MongoDB

The main objectives where to:

• Create a NestJS project
• Create a Proto file with a single call and a streaming point
• Auto-generate data objects and interfaces from a proto

file within the NestJS project
• Implement endpoints for both single call and streaming,

and streaming from MongoDB
• Create Dart client project
• Auto-generate data objects and interfaces from proto file

within Dart project
• Create tests of endpoints within Dart project
• Create integration test file

By the end of the sprint a GitHub project was created and
a NestJS project and a Dart project was setup within. Auto-
generation worked however, it was not able to auto-generate
NestJS modules. Instead, Typescript Interfaces were generated
which can be implemented manually in the NestJS project.
This is slightly more work than full auto-generation but gives
the same type-safety for the endpoints, avoiding different im-
plementations of client and server. The prototype successfully
proved the core aspects of the project.

2) Sprint 2
Time period: 2023-03-13 till 2023-03-19 (Week 11)

The purpose of the sprint is to implement the session part of
the authentication responsibilities in gRPC. This includes the

setup of a complete Auth Session module with 2 endpoints.
The endpoints will utilize only single calls and will not
implement streaming for either gRPC or MongoDB. It will,
however, depend on JWT for access token creation.

The main objectives where to:

• Create the module setup with a module file, a controller
file, a service file, and a persistence file.

• Implement the necessary persistence functions
• Write unit tests for persistence functions
• Implement the necessary service functions
• Write unit tests for service functions
• Implement endpoints “signOut” and “revalidate” in the

controller.
• Write integration tests for endpoints

By the end of the sprint the project was successfully updated
with the new Auth Session module and all functions were
successfully unit tested. However, the integration test was not
possible as the state of the service depends on the authentica-
tion endpoints for the auth session endpoints to be tested.

3) Sprint 3
Time period: 2023-03-20 till 2023-03-26 (Week 12)

The purpose of the sprint is to implement the auth part of
the authentication responsibilities in gRPC. This includes the
setup of a complete Auth module with 2 endpoints. Like the
Auth Session module, the endpoints will utilize only single
calls and will not implement streaming. It will not depend on
JWT for token creation; however, it will depend on Crypto for
password hashing.

The main objectives where to:

• Create the module setup with a module file, a controller
file, a service file, and a persistence file.

• Implement the necessary persistence functions
• Write unit tests for persistence functions
• Implement the necessary service functions
• Write unit tests for service functions
• Implement endpoints “signUp” and “signIn” in the con-

troller.
• Write integration tests for endpoints

By the end of the sprint the project had been successfully
updated with the new Auth module and all functions were
successfully unit tested. However, the integration test uncov-
ered a problem with the implementation of Promise call-back
which had not been tested by unit tests, as it was written in the
controller. By moving the logic to the controller, it was able
to be unit tested which quickly uncovered the root problem.

4) Sprint 4
Time period: 2023-04-03 till 2023-04-09 (Week 14)

The purpose of this sprint is to setup the profile module.
This includes functionality for creating, updating, fetching,

19

and listening for changes to a profile associated with a user’s
unique auth user id. The module will introduce two new
concepts to the project, namely access Token decoding and
streaming. However, streaming was prototyped in the first
sprint and the implementation is expected to be eased by this.

The main objectives where to:

• Create the module setup with a module file, a controller
file, a service file, and a persistence file.

• Implement the necessary persistence functions
• Write unit tests for persistence functions
• Implement the necessary service functions
• Write unit tests for service functions
• Implement endpoints “create”,” update”, “get” and “listen

in the controller.
• Write integration tests for endpoints

The use of streams in Mongo requires the Mongo database to
be sharded or replicated and be connected with a read concern
of Majority. This had the unexpected effect of introducing a lag
in the database updates. As a result, a database update followed
by an immediate fetch of set data would return without the
update. The tests of the rest of the project therefor failed as
the read concern was changed from “local” to “majority”. To
solve the testing problems, artificial delays were injected in
between the update and fetching of data. The module also
introduced the need for input data validation, and a fitting
solution needed to be found. This solution needed to be easy
to replicate, implement, and be easy to identify when glossing
over endpoints. The best solution was identified as “Pipes”
[11] which can intercept the input value of a function and
throw an error if it does not meet requirements. Per the NestJS
documentation, Pipes should work with RPC connections, but
it was not possible to enable them. A temporary and sub-
optimal solution was therefore implemented. This places the
validation logic in line with the endpoint logic, making it
more difficult to ensure correct validation when glossing over
endpoints.

5) Sprint 5
Time period: 2023-04-10 till 2023-04-16 (Week 15)

The purpose of this sprint is to setup the seizure module.
This includes functionality for creating, updating, fetching,
and listening for changes to seizures associated with a user’s
unique ”auth user id. The sprint introduces filtering of seizures,
both when fetching and listening for change.

The main objectives where to:

• Create the module setup with a module file, a controller
file, a service file, and a persistence file.

• Implement the necessary persistence functions
• Write unit tests for persistence functions
• Implement the necessary service functions
• Write unit tests for service functions
• Implement endpoints “create”,” update”, “get” and “listen

in the controller.
• Write integration tests for endpoints

The profile service included Mongo streams, however, it did
not include a delete stream, as there is no delete endpoint. The
seizure stream does include a delete endpoint, which exposed
a problem with the Mongo streams. The change events from
the Mongo stream return the full document that was changed
on insertion and updating documents, but not when deleting
documents. Here you only have access to the document id.
As the seizure document contain a reference to the ”userId”,
and a user should only listen for seizures containing their
”userId”, filtering was not possible. A workaround was im-
plemented, which included a “deleted” flag attribute in the
seizure document. On deletion, this flag would first be updated,
triggering an update event in the Mongo stream. If the flag
was set to true, a Delete event could be returned to the user.
According to Mongo documentation, it appears that the option
for returning the deleted document is possible, but it requires
extensive configuration of the database and only works on
Mongo version 6.0. As the project currently uses 5.2, there is
the possibility for utilising the correct method in the future,
but for now, the workaround is the best solution.

B. Unit Testing

The modules are set up with a controller containing the
endpoints, a service containing the business logic, and a per-
sistence service containing the connection with the database.
The controller contains most of the error state handling,
implemented as guards and inline validation. These endpoints
could be unit tested with a more complex setup; however,
those tests would be identical to the integration tests and
were therefore not implemented. The endpoint validation is
therefore tested through the integration testing. Any error
states that could get passed to the endpoints should therefore
be handled in the business logic and persistence layer. These
handling methods are tested with unit tests for each module.

Fig. 6: Unit test output

Figure 6 shows a complete run of the unit tests in the system.
It can be seen that there are 8 test files. The test files each has
a very similar running time, suggesting that the majority of
the time consumption is due to setup and tear-down, which is
identical across the test files. It can also be seen that the files
are run in parallel, dramatically reducing the testing time.

The finished tests serve as documentation for the project, as
it shows the outcomes which can be expected in different
scenarios. Beyond this, the tests have been the main driver
of bug fixing. In the development process, an entire service
file was written, where after its entire testing file was writ-
ten. The testing file was then used to fix the errors in the

20

implementation. This is not strictly test driven development,
but it shares the focus on function outputs rather than function
implementation for validation and development.

C. Integration Testing

The integration testing is meant to test the functionality which
is specific to the endpoints. This means, ensuring that all
endpoint attributes and error states are correctly conveyed to
the client. The purpose is not to revalidate the business logic
of the endpoints, and so, not all system states are tested. The
integration testing is done with a testing client written in dart.
This was done to mimic the conditions in which the service
is going to be used. The test client has an auto-generated
connection created from the same proto file as the API. Each
endpoint is tested for the different outputs it can return.

The unit tests are tested with an in memory Mongo database.
The integration tests are tested with a MongoDB docker
container. This should mimic the working conditions of the
service more closely. Both the client, the API, and the Mongo
database are run in containers, defined in a docker-compose
file. Due to timing issues, a bash and bat script were made to
setup the compose file.

Fig. 7: Integration test output

Figure 7 shows a complete run of the integration tests. It
can be seen that there are 35 integration tests, and they were
completed in 16 seconds. However, for each test the services
are removed, rebuild, and spun up, and the database volumes
are deleted. A hot run of this process therefore takes 42
seconds on the machine used.

D. Performance Testing

The nonfunctional requirement NF2 in Appendix A states
that a service must be able to handle 500 users each making
one modification per second. To validate this, a performance
test was setup. This uses the same client and setup as the
integration tests but focuses on the delay times of the service.

The test setup used creates each client in a separate process
called and Isolate [2]. Each client creates a separate connection
to the service. Each client will subscribe to the Seizure stream
endpoint which will emit a SeizureChange event every time a
new Seizure is created or deleted. The client will then proceed
to emit 10 Seizure messages with a random frequency between
500 and 1500 milliseconds. This is to avoid every client
sending their message at the exact same moment. Each client
will measure the time laps from a Seizure creation method
is sent till a SeizureChange event is received. After the last
message is sent, the process will return the best, worst, and
average timing from the 10 messages given in milliseconds.
The testing unit will then calculate a total average, as well as
find the overall best and worst timings from the clients.

The testing unit is setup to run 25 iterations of a test with a
given number of clients. Running multiple iterations allows for
monitoring of changes in performance as clients are created
and removed. Running different number of clients allows
for detecting sharp changes in performance between different
loads.

Fig. 8: Performance test - 100 clients, pool size 100, no
modificiations

Figure 8 is one of the first tests runs before any modifications.
It clearly shows an uneven performance degradation as the test
progresses. This indicates a resources leak. This was traced
back to the failed assumption that all connected streams would
automatically shut down upon a client disconnecting. Due to
the use of Observable as the return type, there is no way
of detecting when the client has disconnected, as only the
publisher has power over the connection but not the subscriber.
This means that the processes started for a streaming endpoint
will continue to run after a client shuts down. No clear
solution for this issue could be found, and a temporary
solution was therefore implemented. The input for the Seizure
stream endpoint was changed from a SeizureFilter object to a
SeizureFilter stream object. This allowed the service to listen
for a disconnect message of the client. Thereby, the service
can dispose of resources when a client disconnects. It is not an
elegant solution, and it is presumed that an alternative strategy
is available and built in to gRPC, but it is not certain whether
this is available in the NestJS implementation of gRPC.

21

Fig. 9: Performance test - single iteration, variable client
numbers

Figure 9 shows an alternative performance test. Each test was
run with a single iteration, restarting the service after each.
Here, focus was on performance change as a function of
clients. The test showed a sharp change in performance for
runs with over 100 clients. Upon inspecting the service, it was
seen that the connections to the database never rose above 102,
despite client numbers going above 102. The Connections also
never fell below three despite there being no connected clients.
This indicated a connection limitation on the database. This
was found to be due to the concept of Connection Pools [12].
This is a way of managing and optimising when connections
are created and removed from the database. The default cap is
set to 100 (presumably with two extra connections for global
database management).

Fig. 10: Performance test - 100 clients, pool size 100, ping
modification

Fig. 11: Performance test - 100 clients, pool size 2000, ping
modificiation

Figure 10 and Figure 11 shows the two tests which were run
to examin the effect of changing the pool size. Both tests
were run for 15 iterations. Figure 10 shows the test with the
default pool size and Figure 11 shows the test with an extreme
increase in pool size. The tests show a clear improvement after
increasing the pool size both in the overall performance and
the uniformity of the performance.

Fig. 12: Performance test - 200 clients, pool size 550, ping
modification

22

Fig. 13: Performance test - 200 clients, pool size 250, ping
modification

To fine tune the pool size as well as look for further perfor-
mance limitations and irregularities, additional scenarios were
tested. Figure 12 and Figure 13 shows that increasing the
connection pool also has a detrimental effect. After analysing
the database, it could be seen that connections are opened as
clients are added. However, connections not in use are only
purged when the connection pool reaches its limit. It can be
seen in Figure 12 that a high number of connections reduces
the performance. The best number of connections is therefore
the exact number of clients. The management of the pool can
be further adjusted with parameters on the MongoDB driver
used in the service [12].

Fig. 14: Performance test - 500 clients, pool size 750, ping
modification

Figure 14 shows the modified service running with 500 clients.
It can handle the load but with unimpressive results. The
average response time is 800 milliseconds. All services are
run on a local machine, and network timings therefore must
be added to this for production. Beyond this, there are timings
of up to 4 seconds, which would cause frustration with many
users [13]. To tackle this issue, an alternative tactic was

therefore tested. Instead of creating a database stream for each
user, a single database stream was created for the service
listening on the Seizure collection. Client connections could
then listen on this stream internally in the service and apply
a custom filter.

Fig. 15: Performance test - 500 clients, pool size 750, ping
modification, global stream modification

Figure 15 shows that the global stream tactic had a drastic im-
provement. The new average timing fell to 102.5 milliseconds,
and the worst timings fell to under 2 seconds. The strategy
means that each service instance will receive all Seizure events
and must filter these before returning them to the clients. Once
the client number becomes large enough, this tactic must be
modified. However, this is not expected to be a problem for
MyEpi as of now. It simply needs to be kept in mind and
monitored. Furthermore, the drop off in worst timings, as
seen at iteration 17 on Figure 15, could not be explained.
However, the test was run multiple times and the pattern
repeats itself. It is therefore presumed that either MongoDB
or the Mongo driver has a number of startup processes which
needs to run their course before the optimal performance is
achieved. Either way, it is suspected that the last iterations of
the test is representative for real world usage with occasional
increases in worst timings.

E. End Product

This section will give an overview of the resulting system from
development process. It will start with a general overview, and
thereafter dive into solutions and compromises which were
made in the system.

1) Service Endpoint Overview
The functionality of the product is defined by the resulting
endpoints. This is documented in the proto file of the project.
The file is used to generate endpoints in the back-end service
and to generate a client connection in the front-end. This
ensures that the client and service match. LittleGiants currently
uses OpenAPI to document their endpoints which contains
more detail, such as possible error codes and allowed value
ranges. However, there are tools for converting proto files into
OpenAPI for further documentation if that is desired [14].

23

s e r v i c e AuthService :

f u n c t i o n SignUp (C r e d e n t i a l s) r e t u r n s AuthTokens ;

f u n c t i o n SignIn (C r e d e n t i a l s) r e t u r n s AuthTokens ;

s e r v i c e A u t h S e s s i o n S e r v i c e :

f u n c t i o n SignOut () ;

f u n c t i o n RefreshAccessToken () r e t u r n s AuthTokens ;

s e r v i c e P r o f i l e S e r v i c e :

f u n c t i o n c r e a t e (P r o f i l e) ;

f u n c t i o n update (P r o f i l e) ;

f u n c t i o n g e t () r e t u r n s P r o f i l e ;

f u n c t i o n stream (stream of void) r e t u r n s stream of P r o f i l e ;

s e r v i c e S e i z u r e S e r v i c e :

f u n c t i o n c r e a t e (S e i z u r e) ;

f u n c t i o n update (S e i z u r e) ;

f u n c t i o n g e t (F i l t e r) r e t u r n s L i s t o f S e i z u r e s ;

f u n c t i o n stream (stream of F i l t e r s)

r e t u r n s stream of S e i z u r e s ;

API 1: Service endpoints

There are two major differences between the implemented
endpoints and the interfaces which were defined in Figure 2
and Figure 3. This is the decision to not return the created
object form the Create endpoints and the decision to make
the Stream endpoints accept streams instead of objects. The
decision not to return objects from Create was made to “push”
the use of the implemented streams. If the client relies on
state changes from multiple sources, they are more likely to
implement a faulty state management system. State changes
should therefore solely come from the stream method. The
get method should be seen as a state of its own and should
not be used to update a maintained state in the client system.
The decision to accept streams from the Stream endpoints was
described in the Performance Test section.

2) Code Structure Overview
The code repository is divided into two projects – the service,
which is the product, and the client, which is the integration
and performance testing module.

The service contains meta files in its root, including the proto
file defining the endpoints. The source folder contains the
source code, which is divided into 5 modules which is the
4 main modules (auth, auth-session, profile, seizure) and a
common module. The common folder contains shared errors,
validation logic, and testing logic. It also contains 3 services
– a gRPC service for extracting auth tokens, a JWT service
for encoding, validating, and decoding tokens, and a Mongo
service for injecting Mongo collections.

Each main module contains 4 root files and up to 4 folders.
The root files are:

• Module: defining and configuring the imports and exports

of the module
• Controller: implementing the endpoints and handling

gRPC logic
• Service: containing business logic and data validation

logic
• Persistence: containing communication logic with the

database

The folders are guards, containing endpoint validation classes,
tests, containing unit test files, types, containing non-gRPC en-
tities, and errors, containing both standard and gRPC specific
errors.

3) gRPC Code Generation
Code generation was one of the requested features of this
system. This was achieved by using the gRPC protocol along
with a .proto endpoint definition. The specific code generation
tool used is the protoc-gen-ts [15]. This has wide support and
compiles into human readable Typescript files. This allows
developers to understand the code from its source rather than
through documentation. The code gen tool produces plain
Typescript enums and types from the proto definition and
interfaces for the services. It also produces a service decorator
which implements the needed decorator configuration of the
NestJS Framework.

4) gRPC Object Separation
As stated in the introduction the company maintaining the
system tends to experiment with different technologies. It was
therefore seen as important to keep a good separation between
the business logic and the used technologies. One of these
technologies was the gRPC protocol and the generated code
which could be replaced in a future version.

One method of separation was being mindful about what logic
went into the controller files. These should only contain logic
related to the gRPC protocol. In this way, the transport layer
could easily be switched out. The second method was the
explosion of gRPC generated objects. These were particularly
important to isolate, as the generative tool is community
supported, and a replacement could therefore be necessary
in future versions. Generated objects were therefore kept in
the controllers and mapped to objects used in the service and
persistence layer, which had no ties to specific technologies.

5) Endpoint Context Documentation
The documentation for a service needs to provide the entire
context needed to operate the service efficiently. An important
part of this is the error states which can occur when calling
an endpoint. These states will either need to be avoided or
handle by the client. The endpoint documentation currently
used by LittleGiants is OpenAPI which does provide a way of
documenting possible error states for each endpoint. They also
provide ways of defining the accepted range of values that an
endpoint accepts. The documentation is auto-generated from
their service by adding annotations to the endpoints.

24

Vanilla proto has limited nuance in its schema definition
which is a conscious decision to keep the language simple
and lightweight [16]. It therefore has no standard way to
define custom error states or value ranges. There is multiple
community extension which attempt to add these features, but
it is difficult to evaluate their stability.

The implemented solution was providing an enum for each
service with the possible error states. However, this does
not document which endpoint might throw which error. The
current documentation therefore requires some context and is
not complete. Further context could be given by having an
error state enum for each endpoint or by using comments in
the proto file.

It is possible that the current solution with OpenAPI could
work with gRPC, adding the same decorators to the gRPC
endpoints. In this way, an OpenAPI documentation could be
generated, with a more complete context for the provided
service. However, this would require that the proto file and
OpenAPI decorators are both kept up to date, which could
result in inconsistencies.

6) Input Validation System
The gRPC protocol can be used to define input value types
as each endpoint accepts exactly one predefined data object.
However, as mentioned in the Endpoint Context Documen-
tation section the proto protocol definition does not allow
defining value ranges. A method for validating input data
therefore had to be implemented.

It was expressed by stakeholders that it was preferred to
have all validation statements implemented as decorators on
endpoints. This has the aim of keeping the endpoint logic
clean and simple to read, to make correct configuration easy
to double check. The NestJS framework has a method for
this called Pipes [11]. These allow for defining a middle-ware
function which receives the data before the actual endpoint
function. This middle-ware function can then validate and
reject the data with a given error message.

In the NestJS documentation it is stated that Pipes should work
identically for REST based and RPC based projects [17]. They
have therefore not provided much RPC specific documentation
on pipes. However, when employed, the principles did not
seem to work. Either the documentation is lacking necessary
information, or the framework version used has a bug for this
particular concept. If the first suspicion holds true, further
experimentation and web searching should give a working
solution. If the second suspicion holds true, a future fix is
suspected. However, as validation decorators are not strictly
necessary for the functionality of the service a different
solution was found instead.

The data validation logic has been defined in functions in the
service files of each module. These functions validate the data
and throws a descriptive error upon rejection. The functions are
called directly in the endpoint functions rather than before their

execution. The solution is not as visible as using decorators but
still keeps the endpoint flow unobscured and relatively easy to
understand.

Syntax 1: Create profile endpoint

Pseudo code 1: Create profile endpoint

Syntax 1 shows the general setup for endpoints. The first line
shows the use of guards, which are able to validate the call
based on metadata. As auth tokens are placed in metadata,
the user’s auth status can be validated here. As the auth user
id is placed in the auth token, validation based on the user’s
profile can also be implemented here. On line 3 the proto
input type validation can be seen, as the input of the endpoint
called request is cast to the type of Profile, which is an auto
generated data class based on the proto definition. On Line 8,
the call to the validation function on the service class can be
seen. This is where the data value range can be validated.

Pseudo code 1 shows the flow of the endpoint in plain text.

7) Mongo Stream Management
The most central aspect to this service is the implementation
of real time streaming as this is the prominent feature of the
Firebase service it is replacing. Real time streaming simply
moves a part of the state management from the client to
the service. However, state management still needs to be
handled and this can be done in many ways. It is desired to
generalise this procedure to avoid having to write it for every
state variable. This saves time but more importantly avoids

25

implementational errors.

The utilised database, MongoDB, already has a state manage-
ment utility baked in, called watch [18]. By using the watch
functionality on a collection, you get notified on changes to
the collection and can react to these changes by informing
relevant clients. By utilising this functionality, a great deal
of responsibility is removed from the implementation of the
service.

To enable the watch functionality the Mongo instance used
must either be sharded [19] or replicated [20]. This is because
the watch functionality depends on an oplog [21]. The oplog
registers all changes to share these between multiple Mongo
instances. Beyond that the Read Concern [22] must be set
to “majority”. This means, when communicating with the
database, the “truth” of the database cluster is the state most
widely held within the cluster. This is opposed to “local”
which accepts the state of the database instance you have direct
contact with.

As assured by stakeholders, the database used in the final
service would be both sharded and replicated, and so the
configuration was not a problem. However, the watch function
needed to have access to the data of the affected document
to filter which clients needed to be updated. This data was
available when creating or updating a document, but not
when deleting a document. The documentation does explain
a method for getting the deleted document [23], but it seems
this method is very new and not compatible with the versions
of Mongo used. A workaround therefore had to be found.

The solution was adding a Boolean field to all document
schema’s. On creation this would be set to “false”. Just before
deletion, the document would be updated, and the field would
be set to “true”. The update would trigger the watch function.
Upon an update event, the call-back checks the Boolean and
sends an update event to the client if the Boolean is false and
a delete event if the Boolean is true. The workaround has the
drawback of increasing complexity of both documents, the
delete function, and the watch call-back. It also requires an
extra call to the database on deletion with an extra resource
cost. However, the drawbacks are estimated to be acceptable.
They are also presumed to be temporary as the solution
mentioned in the documentation could be implemented in
future versions.

As discovered in the performance test the Mongo change
streams must be handled correctly to perform efficiently. To
this end, change streams are created per service instead of per
client. Each stream returns all events on the collection for all
clients. When a client subscribes to a stream, a subscription is
made within the service to the global Mongo change stream,
and the events relevant to the client is returned to them. The
solution proved efficient for a number of 500 active clients
on one service but it is expected to cause problems as the
active client number grows. For a scenario of 10.000 active
users distributed on 20 service instances, the received change

events from the Mongo server would be 20 times higher than
what is needed. This is due to the fact that events for a single
client on a single service instance will be sent to all 20 service
instances.

26

VI. CONCLUSION

A. Conclusion

The basis of this project was to address the inflexibility of
Firebase, which was used as the back-end support for an
existing front-end application. The goal was to develop and
demonstrate a template design which would serve as a foun-
dation for developing a replacement service.The main focus of
the template was to address the most uncertain features and
provide standardised solution patterns for handling repetitive
logic efficiently. While the project sought to optimise the
product attributes it also sought to remain aligned with the
products already developed and maintained by the organisation
responsible for implementing the complete service.

To identify repetitive logic, functional requirements were
elicited from the current front-end project, providing an
overview of the required feature types. To identify the most
uncertain features, a list of central responsibilities were elicited
from the functional requirements. These were analysed for
their desired properties and compared with properties offered
by existing solutions. The disparity between the desired prop-
erties and the offered properties showed the attainable value
of each responsibility. Based on the comparison, the selected
responsibilities were Stream Management, Code Generation,
and Authentication. Thereafter functional requirements were
selected based on their coverage of identified feature types
and their ability to demonstrate the selected responsibilities.

Following standard software methodologies, the selected re-
quirements were extrapolated into broader use-cases. From
there, a concrete product design could be developed to serve
as the basis for the implementation. Based on information
attained from stakeholder meetings, the existing project, and
information gathered during the responsibility analysis, a tech
stack was selected. The tech-stack was primarily based on
technologies already used within the involved organisation.
The primary deviance was the implementation of a new
transport protocol - gRPC. This had the promise of broad code
generation, rapid transfer speeds, and the ability to offer both
static endpoints as well as stream endpoints.

During the implementation a list of central assumptions were
verified - the compatibility of the chosen tech-stack, the ability
to generate code with both the chosen framework and the
front-end programming language, and the ability to communi-
cate between the chosen framework and the front-end project
programming language with the chosen transport protocol.
This provided the bare minimum validation for proceeding
with the implementation.

To prove the implementation of the business logic for the func-
tional requirements a suite of unit tests was developed during
the implementation. This covers the possible states of each
function call from the endpoints. It documents the intended
behaviour of each business logic function to ensure compliance
with the identified functional requirements. Furthermore, to
prove the usability of the endpoints, an integration test suite

was developed. This proves the correct actuation of business
logic as an endpoint is called as well as the correct return of
data and error states.

Authentication was selected as a central responsibility both
because of its overall importance and because of the potential
need for a different approach compared to previous projects.
However, during the implementation it was discovered that
the chosen tech-stack supported a nearly identical approach to
what had already been used in the involved organisation.

Code Generation was another central responsibility as re-
quested from stakeholder meetings. This was achieved through
the chosen transport protocol as it offered native support
for code generation in an array of programming languages.
The currently used method in the involved organisation only
offers code generation for static endpoints. The implemented
method improves on this by also offering code generation for
stream endpoints. However, the used method does limit the
nuance of information which can be conveyed in the generated
documentation, as the method does not offer native support for
endpoint errors or input range documentation.

Stream management was the most important responsibility as
it is the central selling point of the currently used Firebase
service. The implemented method demonstrates implicit real-
time filtered stream management. However, the project only
covers stream management in the back-end service and a client
stream management approach still needs to be developed.

The resulting product contains a selective array of endpoints
which demonstrate the key feature types needed in the final
product. It proves the viability of the selected tech-stack and
includes the selected central responsibilities. It closely builds
upon the existing projects within the involved organisation,
and restricts its deviation to areas with a strongly presumed
improvement in desired qualities. It provides a solid founda-
tion for the implementation of a complete replacement service.

B. Discussion and Perspective

Though the methodology used in the project is sound, an
error was found in the sequence. The performance testing
was performed at the end of the implementation after all
functionalities had been implemented and tested. It revealed
deep seeded structural errors which had to be rectified for all
occurrences. This resulted in re-work and re-testing of two
out of five modules in the project. Instead, another sprint
should have followed the initial prototype sprint to test the
performance of the streaming implementation. This would
have saved time throughout the implementation process.

Furthermore, the performance tests have shown a list of
parameters which can significantly affect the performance of
the product. It is suggested that additional testing is done
in production environments before further development takes
place. This should ensure that the results of this paper remain
valid as the active user count grows.

To increase the value offered by the resulting product there are

27

five main improvements which could be implemented in future
iterations: data stream optimisation, Separation of Authentica-
tion into isolated services, improvement of validation logic for
readability, improvement of documentation, extraction of logic
patterns.

The data stream is currently broadcasting all data changes to
every service, which is going to yield an exponential data con-
sumption as a function of active users. Implementing a method
for filtering the data before it is broadcast to the endpoint
services is assumed necessary for the long term viability of
the proposed solution as active user count increases.

The authentication responsibility has been separated into two
distinct responsibilities - authentication handling and session
handling. Session handling could be reused regardless of
the implemented authentication method and authentication
methods could be reused across multiple project. To reduce
the work of implementing these elements into new projects
they could be separated into micro-services. This would allow
reuse without meddling with the source code.

The validation of the input parameters is currently highly
manual and prone to incorrect implementation. Ideally, a more
implicit method should be found to make input guards easier to
identify, thereby reducing the risk of bugs caused by validation
logic.

The current documentation of the implemented service is
the gRPC specifications document. This lacks the required
information for a complete implementation of the service.
There are multiple methods upon which the total information
of the service could be conveyed, hereunder comments in the
gRPC specification or the use of OpenAPI along side the
gRPC specification. A method should be chosen to provide
clear information on the use of the service and the possible
states it can enter.

The code contains multiple reused patterns, especially in the
stream endpoint data flow. These patterns should be extracted
to increase code reuse and decrease the source of bugs.

The primary technology of interest in this project has been the
use of gRPC as a transport protocol for a back-end service.
gRPC was originally designed to support inter service com-
munication, but through the project, its efficient data transfer
and broad code generation has proved it to be a solid choice
for client supporting services as well. It is a promising concept
able to support the growing demand of services which require
real-time data delivery with minimal bandwidth requirements.

28

REFERENCES

[1] “Myepi,” myepi.dk, [Accessed: 9 May 2023].

[2] “Isolate class,” https://api.flutter.dev/flutter/dart-isolate/Isolate-
class.html, March 2023, [Accessed: 9 May 2023].

[3] “Documentation authentication,” https://firebase.google.com/docs/auth,
May 2023, [Accessed: 9 May 2023].

[4] “Enabling offline capabilities,” https://firebase.google.com/docs/database/flutter/offline-
capabilities, Juli 2022, [Accessed: 9 May 2023].

[5] “Openapi introduction,” https://docs.nestjs.com/openapi/introduction,
[Accessed: 9 May 2023].

[6] “Openapi specification v3.1.0,” https://spec.openapis.org/oas/latest.html,
February 2021, [Accessed: 9 May 2023].

[7] “Comming from openapi,” https://www.asyncapi.com/docs/tutorials/getting-
started/coming-from-openapi, April 2019, [Accessed: 9 May 2023].

[8] J. Brandhorst, “The state of grpc in the browser,”
https://grpc.io/blog/state-of-grpc-web, January 2019, [Accessed: 9
May 2023].

[9] B. Phillips, “grpc with rest and open apis,” https://grpc.io/blog/coreos/,
May 2016, [Accessed: 9 May 2023].

[10] T. Peskens, “Why choose between grpc and rest,”
https://medium.com/@thatcher/why-choose-between-grpc-and-rest-
bc0d351f2f84, February 2018, [Accessed: 9 May 2023].

[11] “Overview pipes,” https://docs.nestjs.com/pipes, [Accessed: 9 May
2023].

[12] “Connection pool overview,” https://www.mongodb.com/docs/manual/administration/connection-
pool-overview, 2023, [Accessed: 9 May 2023].

[13] J. Nielsen, “Response times: The 3 important limits,”
https://www.nngroup.com/articles/response-times-3-important-limits/,
1993, [Accessed: 12 May 2023].

[14] J. Ji, “protobuf2swagger,” https://www.npmjs.com/package/protobuf2swagger,
2022, [Accessed: 9 May 2023].

[15] “Protoc gen typescript,” https://www.npmjs.com/package/protoc-gen-ts,
2023, [Accessed: 9 May 2023].

[16] “Protocol buffers v3,” https://cloud.google.com/apis/design/proto3, May
2023, [Accessed: 9 May 2023].

[17] “Websockets pipes,” https://docs.nestjs.com/websockets/pipes, [Ac-
cessed: 9 May 2023].

[18] “db.collection.watch(),” https://www.mongodb.com/docs/manual/reference/method/db.collection.watch,
2023, [Accessed: 9 May 2023].

[19] “Sharding,” https://www.mongodb.com/docs/manual/sharding, 2023,
[Accessed: 9 May 2023].

[20] “Replication,” https://www.mongodb.com/docs/manual/replication,
2023, [Accessed: 9 May 2023].

[21] “Replica set oplog,” https://www.mongodb.com/docs/manual/core/replica-
set-oplog, 2023, [Accessed: 9 May 2023].

[22] “Read concern,” https://www.mongodb.com/docs/manual/reference/read-
concern, 2023, [Accessed: 9 May 2023].

[23] “Change streams,” https://www.mongodb.com/docs/manual/changeStreams,
2023, [Accessed: 9 May 2023].

29

APPENDIX A
REQUIREMENTS TABLES

ID Prioritisation Requirement
F1 Must Profile
F1.1 Must A user shall be able to create a profile
F1.1.1 Could The profile must be given name, email, phone number, date of birth, address, password, user type, seizure type
F1.1.2 Could The given email must be verified to belong to the user
F1.1.3 Could The given phone number must be verified to belong to the user
F1.2 Should A verified user shall be able to delete their profile along with all connected data
F1.3 Must A verified user shall be able to update their profiles non-identifying data
F1.4 Should A verified user shall be able to get their profile
F1.5 Must A verified user shall be able to listen for and receive changes of their profile
F1.6 Could A verified user shall be able to set and update their contact alert settings
F1.7 Would A verified user shall be able to upgrade to a paid user type
F2 Would Contacts
F2.1 Would A verified user shall be able to add contacts to their profile
F2.1.1 Would The contact must be given name, type, and phone number
F2.1.2 Would A verified user shall be able to add 2 contacts without payment
F2.1.3 Would A verified user shall be able to add additional contacts with payment
F2.1.4 Would A given contacts phone number must be verified
F2.1.5 Would A given contacts phone number must not be used for the user’s own profile
F2.1.6 Would A given contacts phone number must only be used for one of the user’s contacts
F2.2 Would A verified user shall be able to delete their contacts
F2.3 Would A verified user shall be able to listen for and receive changes to their contacts
F3 Must Seizures
F3.1 Must A verified user shall be able to add seizure to their profile
F3.1.1 Could The seizure shall contain date and time, duration, description, plus additional information
F3.1.2 Could The seizure can contain location
F3.1.3 Would A verified user shall be able to add seizure with alert for contacts
F3.1.4 Must A verified user shall be able to add seizure without alert for contacts
F3.2 Should A verified user shall be able to update a seizure tied to their profile
F3.3 Must A verified user shall be able to delete a seizure tied to their profile
F3.4 Should A verified user shall be able to get seizures tied to their profile matching a given filter
F3.5 Must A verified user shall be able to listen for and receive changes to seizures tied to their profile matching a given filter
F4 Would Notification stream
F4.1 Would A verified user shall be able to receive notifications
F5 Must Authentication
F5.1 Must A user shall be able to verify with email and password
F5.2 Would A user shall be able to reset password with email
F5.3 Must A verified user shall be able to remain logged in across sessions
F5.4 Must A verified user shall be able to end authentication session

TABLE I: Functional requirements

Category Requirement Test parameter
NF1 Scalability Service must be stateless N/A

NF2 Availability Must handle 500 active users per service
500 clients with

1 modification / second
NF3 Modifiability Must allow easy implementation of defined expected future features N/A
NF4 Testability Must have 100% test coverage of endpoint call states Test coverage
NF5 Testability Must have 95% test coverage of complete service Test coverage
NF6 Security Must use Bcrypt for passwords N/A

TABLE II: Non-functional requirements

30

APPENDIX B
USE-CASE ANALYSIS DERIVED CONCEPTS TABLE

AoR Data Objects Errors Internal processes Database calls

Authentication

Email

Password

AuthUser

RefreshToken

AuthSession

AccessToken

Password insufficient

Email insufficient

User exists

!User exits

!Password match user

!Access token Verified

!Refresh token verified

Check password format

Check email format

Check password match user

Verify token

Create access token

Create refresh token

Find user from email

Create user from email and password

Create session from user and refresh token

Delete session from user

Get session from refresh token

Profile

ProfileData

AccessToken

UserId

Profile

ChangeType

!Access token Verified

!Profile data verified

Verify token

Verify profile data

Get user id from access token

Create profile from data and user id

Update profile from data and user id

Get profile from user id

Listen to profile from user id

Seizure

SeizureData

AccessToken

UserId

Seizure

ChangeType

SeizureId

FilterData

!Access token Verified

!seizure exist

!Seizure data verified

!filter data verified

Verify token

Verify seizure data

Verify filter data

Get user id from access token

Create seizure from data and user id

Delete seizure from seizure id

Get seizures from filter and user id

Listen to seizures from filter and user id

Cross Section

AccessToken

UserId

ChangeType

!Access token Verified
Verify token

Get user id from access token

31

APPENDIX C
UNIT TESTS TABLES

Service Function Expect Description
Persistence createSession Pass When called, should insert session in database
Persistence deleteSession Pass When called, should remove session form database
Service createSession Pass When ObjectId is given, should return session with refresh token and expiration
Service signOut Pass When refresh token of existing session is given, should remove session from database
Service signOut Pass When non existing token is given, should complete without error
Service refreshAccessToken Pass When refresh token of existing session is given, should return JWT token containing user id
Service refreshTokenGuard Fail When invalid token given, should throw error
Service refreshTokenGuard Fail When expired token given, should throw error
Service refreshTokenGuard Pass When valid token given, should not throw error

TABLE III: Auth Session Module unit tests

Service Function Pass/Fail Description
Persistence createUser Pass When valid information given, should create user and return it
Persistence getUserFromEmail Pass When user exists, should create user, and return it
Persistence getUserFromEmail Pass When user does not exist, should return null
Service signUp Pass When valid credentials given, should create user and return auth tokens
Service signUp Fail When in use email is given, should throw error
Service signIn Fail When invalid email is given, should throw error
Service signIn Fail When invalid password is given, should throw error
Service signIn Pass When session already exists, should return new session

TABLE IV: Auth Module unit tests

Service Function Expect Description
Persistence create Pass When required attributes given, should insert profile to database
Persistence update Pass When profile exist and required attributes given, should update profile with attributes
Persistence get Pass When profile exist, should return profile
Persistence stream Pass When profile is created, should return ProfileChange with type CREATE and correct profile data
Persistence stream Pass When profile is updated, should, return ProfileChange with type UPDATE and correct profile data
Persistence stream Pass When one user subscribes to stream, and other user changes data, should not return change event
Service create Pass When valid AccessToken given, should insert profile in database
Service update Pass When valid AccessToken given, should update profile in database
Service get Pass When valid AccessToken given, should return profile
Service stream Pass When valid AccessToken given and user is created, should return ProfileChange of type CREATE

TABLE V: Profile Module unit tests

32

Service Function Pass/Fail Description
Persistence create Pass When valid input given should create new seizure
Persistence create Fail When invalid input is given, should throw error
Persistence delete Pass When valid id is given, should delete associated seizure
Persistence get Pass When no id is given, should return empty
Persistence get Pass When filter is given, should return all seizures
Persistence get Pass When only lower bound duration is given, should return seizures with same or longer duration
Persistence get Pass When only upper bound duration is given, should return seizures with same or shorter duration
Persistence get Pass When all filters are given, should return all matching seizures
Persistence get Pass Should not return seizures from other users
Persistence stream Pass When only lower bound duration is given, should return CREATE change event for any seizure
Persistence stream Pass When only upper bound duration is given, should return CREATE change event for seizure with same or lower duration
Persistence stream Pass When all filters are given, should return CREATE change event for matching seizures only
Persistence stream Pass When one user subscribes to stream, and other user changes data, should not return change event
Service validation Fail When negative duration is given, should throw error
Service Validation Fail When invalid enum is given, should throw error
Service Validation Pass When valid input is given, should throw error
Service create Pass When valid input given, should create seizure
Service delete Pass When valid id is given, should delete associated seizure
Service get Pass When seizure exist and valid input given, should return seizure
Service Stream Pass When seizure is created, should return CREATE change event
Service stream Pass When seizure is deleted, should return DELETE change event

TABLE VI: Seizure Module unit tests

33

APPENDIX D
STAKEHOLDER MEETINGS

A. Requirement Clarification

1) Formalities
The meeting was held the 10th of February 2023. It was attended by Daniel, the project manager of MyEpi. The intention of
the meeting was to show the analysis of the current system and the resulting elicited requirements. There were several unused
functions and libraries which may or may not have needed to be included in the service. Beyond this, a list of non-functional
requirements was desired for the project, as well as goals and hopes for the project.

2) Notes
Clarifications

• Crash reporting will be done by LittleGiants with third party software
• Patients does not exist
• User creation must have FCM token for Firebase
• FCM token must be added for new devices on login and removed on logout
• Seizures need pagination and search

Requirements

• containerised
• all real-time data
• Bcrypt for password
• expected test coverage 95
• 1 modification per second, 1000 active clients
• Build in admin support

Other

• Perform load test for verification

A requirements spec, both for the current system as well as future features, had been created beforehand. Daniel needed to
get permission to share it with me. This may have a great impact on the current work.

B. Analysis Presentation

1) Formalities
The meeting was held the 24th of February 2023. It was attended by Daniel, the project manager of MyEpi. The intention of
the meeting is to show the analysis of both the current problem domain, the current solution, and the currently used solutions.
The goal is to get feedback on what identified qualities, trade-offs, and side effects, matters most to MyEpi and LittleGiants.
Design decisions will be based mainly on the current analysis and the given feedback of the meeting.

Questions/Information

• AsyncAPI and OpenAPI vs gRPC and REST
• Stream state management
• Potential separation of Authentication and Authentication Session Management.
• Current use of Access and Refresh tokens are encouraged
• Authentication within WebSocket or not
• Fragile WebSocket Authorisation management
• Current payment accommodation
• Gateway API vs Twilio

2) Notes
• The current Redis setup will be difficult to configure for MongoDB streams
• LittleGiants is open to trying out gRPC and have been working with it before

34

C. Implementation Presentation

1) Formalities
The meeting was held the 31th of March 2023. It was attended by Daniel, the project manager of MyEpi. The Intention
of the meeting was to present the current architecture decision of the project and get feedback on how it aligned with their
expectations. The goal was to see how similar it was to their current project structure, and whether there were any concerns
that needed to be addressed.

D. Notes

• The current state of the project has demonstrated all concepts used in the current project structure of LittleGiants.
• There is an interest in a cleaner and more detailed presentation of the endpoints than the raw proto file.
• There is an interest in generating or clearly documenting permitted value ranges and patterns for the endpoints

35

APPENDIX E
CONCEPT LOCATION

A. Method

The aim of this project is to replace the Firebase service with a custom solution. The first step is to locate and analyse the
functionality used from the Firebase packages, as this is the functionality to replace.

To do this, the used Firebase libraries are first identified. Their general usage and responsibility are looked up. Thereafter, all
the files using the libraries are identified and analysed to identify the usage of each library. Only functionality relevant to the
application is in focus. Firebase specific setup is disregarded.

The functions using the Firebase libraries will be recursively investigated. This is to ensure that data given to the function,
and used from the functions return value, is identified. This includes side-effects of stateful functions.

The goal is gaining a list of functions, function responsibilities, and needed data models from the existing implementation of
Firebase.

B. Import Analysis

First, the Firebase packages are identified from the pubspec.yaml file, where imports of a flutter project are defined:

• firebase database
• firebase remote config
• firebase core
• firebase crashlytics
• firebase auth
• cloud firestore
• cloud functions
• firebase messaging

1) firebase database
The Firebase database package is a package that allows the user to communicate with a Firebase Real-time No-SQL database.
However, it appears that it is not used anywhere in the front-end and is a dead import.

2) firebase remote config
Remote config is a package which allows you to configure the appearance and behaviour of your app through cloud hosted
values which your app responds to. This allows you to update the app through the cloud hosted values without rebuilding and
uploading the through any app store. The remote config package is only reference in the versionCheck.dart file. However, the
file and its contained static functions are not referenced, and the package is therefor currently not in use.

3) firebase core
The package is used only in the main.dart file on which the function initializeApp is called. This appears to handle configuration
and is therefore not relevant to the replacement system.

4) firebase crashlytics
Crashlytics is a package used for customising the collected crash reports of the Firebase setup. It is referenced only in the
main.dart file, where it is used to disable crash reporting when debug mode is enabled and enable the crash reporting when
debug mode is disabled.

5) Remaining Packages
The remaining packages appear in a number of files and appear to be central for the main functionality of the Firebase setup.
Each will be investigated for its use in the project. If the file provides functionality in use, which is not solely relevant to a
Firebase implementation, it will be considered in the requirements elicitation process.

36

1. Use-case Analysis
1.1. Authentication

Create Authentication User

Fulfilled
requirements

Goal Actor has a user associated with email

Sequence

1. Actor request user creation with email and password
2. Email and password are checked for format adherence
3. User is created with email and password
4. Actor is informed of successful user creation

Error states
2.a. email or password does not adhere to format requirements, actor is
informed of error, transaction terminates
3.a. user exists, actor is informed, transaction terminates

APPENDIX F
DESIGN ARTIFACTS

37

Start Authentication Session

ID F6.1

Precondition Actor has created a user

Postcondition Actor is verified and has proof of authentication session

Sequence

1. Actor request user verification with email and password
2. Email and password are verified
3. Authentication session is started
4. Proof of authentication session is returned to actor

Alternatives
2.a.1. Email does not match any user, actor is informed, transaction terminates
2.a.2. Password does not match user, actor is informed, transaction terminates
3.a. authentication session is already active, transaction continues

38

End Authentication Session

ID F6.4

Precondition Actor has created a user and is verified

Postcondition Actor is no longer verified

Sequence

1. Actor request authentication session terminations with proof of verification
2. Verification data is verified
3. Authentication session is terminated
4. Actor is informed of successful termination

Alternatives 2.a. Verification data is rejected, actor is informed, transaction terminates.

Get Authentication Token

ID F6.3

Precondition The actor has created a user and is verified

Postcondition The actor has proof of verification

Sequence

1. Actor request proof of verification with proof of authentication session
2. Authentication session is verified
3. Verification proof is created
4. Verification proof is returned to actor

Alternatives 2.a. Verification data is rejected, actor is informed, transaction terminates.

39

Errors Internal processes Database calls

Password insufficient
Email insufficient

User exists
!User exits

!Password match user
!Access token Verified
!Refresh token verified

Check password format
Check email format

Check password match user
Verify token

Create access token
Create refresh token

Find user from email
Create user from email and password

Create session from user and refresh token
Delete session from user

Get session from refresh token

40

1.2. Profile
Create Seizure

ID F1.1

Precondition The actor has created a user and is verified

Postcondition The actor has a profile associated to their existing user

Sequence

1. Actor request profile creation with profile data and proof of verification
2. Verification data is verified
3. Profile data is verified
4. Profile is created
5. Created profile is returned to actor

Alternatives
2.a. Verification data is rejected, actor is informed, transaction terminates.
3.a. Profile Data is rejected, actor is informed of error, transaction terminates.

41

Update Profile

ID F1.3

Precondition The actor has created a user, a profile, and is verified

Postcondition The actor’s associated profile is updated with new data

Sequence

1. Actor request profile update with profile data and proof of verification
2. Verification data is verified
3. Profile data is verified
4. Profile matching user is found
5. Profile is updated
6. Updated profile is returned to actor

Alternatives
2.a. Verification data is rejected, actor is informed, transaction terminates.
3.a. Profile Data is rejected, actor is informed of error, transaction terminates.

42

Get Profile

ID F1.4

Precondition The actor has created a user, a profile, and is verified

Postcondition

Sequence
1. Actor request profile with proof of verification
2. Verification data is verified
3. Profile matching verified user is returned to actor

Alternatives 2.a. Verification data is rejected, actor is informed, transaction terminates.

Listen to Profile

ID F1.5

Precondition The actor has created a user, a profile, and is verified

Postcondition

Sequence
1. Actor request updates on profile state change with proof of verification
2. Verification data is verified
3. Changes to profile matching verified user are sent to actor

Alternatives 2.a. Verification data is rejected, actor is informed, transaction terminates.

43

Errors Internal processes Database calls

!Access token Verified
!Profile data verified

Verify token
Verify profile data

Get user id from access token

Create profile from data and user id
Update profile from data and user id

Get profile from user id
Listen to profile from user id

1.3. Seizures
Create Profile

ID F3.1

Precondition The actor has a profile and is verified

Postcondition The actor has a new seizure associated to their existing user

Sequence

1. Actor request seizure creation with seizure data and proof of verification
2. Verification data is verified
3. Seizure data is verified
4. Seizure is created
5. Created seizure is returned to actor

Alternatives
2.a. Verification data is rejected, actor is informed, transaction terminates.
3.a. Seizure Data is rejected, actor is informed of error, transaction terminates.

44

Update Seizure

ID F3.2

Precondition The actor has created a user, a profile, a seizure, and is verified

Postcondition The selected seizure is updated with new data

Sequence

1. Actor request seizure update with seizure data, id, and proof of verification
2. Verification data is verified
3. Seizure data is verified
4. Seizure matching id is found
5. Seizure is updated
6. Updated seizure is returned to actor

Alternatives
2.a. Verification data is rejected, actor is informed, transaction terminates.
3.a. Seizure data is rejected, actor is informed of error, transaction terminates.
4.a. No seizure is found matching id, actor is informed, transaction terminates.

45

Delete Seizure

ID F3.3

Precondition The actor has created a user, a profile, a seizure, and is verified

Postcondition The selected seizure is deleted

Sequence

1. Actor request seizure deletion with seizure id and proof of verification
2. Verification data is verified
3. Seizure matching id is found
4. Seizure is deleted
5. Confirmation of deletion is returned to actor

Alternatives
2.a. Verification data is rejected, actor is informed, transaction terminates.
3.a. No seizure is found matching id, actor is informed, transaction terminates.

46

Get Seizures

ID F3.4

Precondition The actor has created a user, a profile, and is verified

Postcondition

Sequence

1. Actor request seizure with filter data and proof of verification
2. Verification data is verified
3. Seizures matching filter and verified user is found
4. Seizures are returned to actor

Alternatives 2.a. Verification data is rejected, actor is informed, transaction terminates.

47

Listen to Seizure

ID F3.5

Precondition The actor has created a user, a profile, and is verified

Postcondition

Sequence
1. Actor request updates on user seizures with filter and proof of verification
2. Verification data is verified
3. Changes to seizures matching filter and verified user are sent to actor

Alternatives 2.a. Verification data is rejected, actor is informed, transaction terminates.

48

Errors Internal processes Database calls

!Access token Verified
!Profile data verified

!seizure exist
!Seizure data verified

!filter data verified

Verify token
Verify seizure data

Verify filter data
Get user id from access token

Create seizure from data and user id
Update profile from data and seizure id

Delete seizure from seizure id
Get seizures from filter and user id

Listen to seizures from filter and user id

1.4. Results
Errors Internal processes Database calls

!Access token Verified
!Profile data verified

Verify token
Get user id from access token

49

2. Activity Diagrams
2.1. Auth Session

50

51

2.2. API

52

